McCollom T M, Shock E L
GEOPIG, Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130, USA.
Geochim Cosmochim Acta. 1997 Oct;61(20):4375-91. doi: 10.1016/s0016-7037(97)00241-x.
Mixing of hydrothermal fluids and seawater at the ocean floor, combined with slow reaction kinetics for oxidation/reduction reactions, provides a source of metabolic energy for chemolithotrophic microorganisms which are the primary biomass producers for an extensive submarine ecosystem that is essentially independent of photosynthesis. Thermodynamic models are used to explore geochemical constraints on the amount of metabolic energy potentially available from chemosynthetic reactions involving S, C, Fe, and Mn compounds during mixing of hydrothermal fluids with seawater. For the vent fluid used in the calculations (EPR 21 degrees N OBS), the model indicates that mixing environments are favorable for oxidation of H2S, CH4, Fe2+ and Mn2+ only below approximately 38 degrees C, with methanogenesis and reduction of sulfate or S degrees favored at higher temperatures, suggesting that environments dominated by mixing provide habitats for mesophilic (but not thermophilic) aerobes and thermophilic (but not mesophilic) anaerobes. A maximum of approximately 760 cal per kilogram vent fluid is available from sulfide oxidation while between 8 and 35 cal/kg vent fluid is available from methanotrophy, methanogenesis, oxidation of Fe or Mn, or sulfate reduction. The total potential for chemosynthetic primary production at deep-sea hydrothermal vents globally is estimated to be about 10(13) g biomass per year, which represents approximately 0.02% of the global primary production by photosynthesis in the oceans. Thermophilic methanogens and sulfate- and S degree-reducers are likely to be the predominant organisms in the walls of vent chimneys and in the diffuse mixing zones beneath warm vents, where biological processes may contribute to the high methane concentrations of vent fluids and heavy 34S/32S ratios of vent sulfide minerals. The metabolic processes taking place in these systems may be analogs of the first living systems to evolve on the Earth.
热液流体与海水在洋底混合,再加上氧化/还原反应的缓慢反应动力学,为化能自养微生物提供了代谢能量来源,这些微生物是一个基本上独立于光合作用的广泛海底生态系统的主要生物量生产者。热力学模型用于探索在热液流体与海水混合过程中,涉及硫、碳、铁和锰化合物的化学合成反应可能产生的代谢能量数量的地球化学限制。对于计算中使用的热液流体(北纬21度东太平洋海隆观测站),该模型表明,混合环境仅在约38摄氏度以下有利于硫化氢、甲烷、亚铁离子和锰离子的氧化,在较高温度下有利于甲烷生成以及硫酸盐或单质硫的还原,这表明以混合为主的环境为嗜温(而非嗜热)需氧菌和嗜热(而非嗜温)厌氧菌提供了栖息地。每千克热液流体通过硫化物氧化最多可获得约760卡路里的能量,而通过甲烷氧化、甲烷生成、铁或锰的氧化或硫酸盐还原每千克热液流体可获得8至35卡路里的能量。全球深海热液喷口化学合成初级生产的总潜力估计约为每年10(13)克生物量,约占海洋中光合作用全球初级生产的0.02%。嗜热产甲烷菌以及硫酸盐和单质硫还原菌可能是喷口烟囱壁和温暖喷口下方扩散混合区中的主要生物,在这些区域,生物过程可能导致喷口流体中高浓度的甲烷以及喷口硫化物矿物中高的34S/32S比值。这些系统中发生的代谢过程可能类似于地球上最早进化出的生命系统。