Barbier B, Bertrand M, Boillot F, Chabin A, Chaput D, Henin O, Brack A
Centre de Biophysique Moleculaire, CNRS, Orleans, France.
Biol Sci Space. 1998 Jun;12(2):92-5. doi: 10.2187/bss.12.92.
A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50 to 100 micrometers size range, the carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon. They might have brought more carbon to the surface of the primitive Earth than that involved in the present surficial biomass. Amino acids such as "-amino isobutyric acid have been identified in these Antarctic micrometeorites. Enantiomeric excesses of L-amino acids have been detected in the Murchison meteorite. A large fraction of homochiral amino acids might have been delivered to the primitive Earth via meteorites and micrometeorites. Space technology in Earth orbit offers a unique opportunity to study the behaviour of amino acids required for the development of primitive life when they are exposed to space conditions, either free or associated with tiny mineral grains mimicking the micrometeorites. Our objectives are to demonstrate that porous mineral material protects amino acids in space from photolysis and racemization (the conversion of L-amino acids into a mixture of L- and D-molecules) and to test whether photosensitive amino acids derivatives can polymerize in mineral grains under space conditions. The results obtained in BIOPAN-1 and BIOPAN-2 exposure experiments on board unmanned satellite FOTON are presented.
最近从南极古老的蓝色冰层中提取出了大量的微陨石。在50至100微米的尺寸范围内,碳质微陨石占样本的80%,且含有2%的碳。它们可能给原始地球表面带来的碳比目前地表生物量中所含的碳更多。在这些南极微陨石中已鉴定出诸如α-氨基异丁酸之类的氨基酸。在默奇森陨石中检测到了L-氨基酸的对映体过量。很大一部分同手性氨基酸可能是通过陨石和微陨石被输送到原始地球的。地球轨道上的空间技术提供了一个独特的机会,来研究原始生命发展所需的氨基酸在暴露于太空条件下时的行为,这些氨基酸可以是游离状态,也可以是与模拟微陨石的微小矿物颗粒结合在一起的状态。我们的目标是证明多孔矿物材料能在太空中保护氨基酸免受光解和外消旋作用(L-氨基酸转化为L-和D-分子的混合物),并测试光敏氨基酸衍生物在太空条件下能否在矿物颗粒中聚合。本文展示了在无人卫星“光子号”上进行的BIOPAN-1和BIOPAN-2暴露实验所获得的结果。