Suppr超能文献

光合微生物中谷胱甘肽代谢的进化

The evolution of glutathione metabolism in phototrophic microorganisms.

作者信息

Fahey R C, Buschbacher R M, Newton G L

机构信息

Department of Chemistry, University of California-San Diego, La Jolla 92093, USA.

出版信息

J Mol Evol. 1987;25:81-8. doi: 10.1007/BF02100044.

Abstract

Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototrophic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

摘要

在归因于谷胱甘肽(GSH)的众多作用中,最明确确定的作用是其通过破坏硫醇反应性氧副产物来保护高等真核生物免受氧毒性。如果这是GSH的主要功能,那么GSH代谢应该在氧光合作用进化期间或之后进化。许多细菌不产生GSH这一事实与该观点一致。在本研究中,我们检测了多种光合微生物的低分子量硫醇组成,以确定GSH产生的进化与氧光合作用的进化有何关系。在一溴二苯甲烷(mBBr)存在下提取细胞,将硫醇转化为荧光衍生物,通过高压液相色谱进行分析。在绿色细菌(嗜硫代硫酸盐绿菌和橙色绿弯菌)中未发现显著水平的GSH。紫色细菌(荚膜红假单胞菌、深红螺菌、球形红杆菌和胶质红环菌)、蓝细菌[集胞藻、地衣状微鞘藻、藓生念珠藻、两栖颤藻、湖生颤藻、颤藻属(犹他州臭泉)、钻孔颤藻、鞘丝藻和 lividus 聚球藻]以及真核藻类(蛋白核小球藻、普通小球藻、纤细裸藻、斜生栅藻和莱茵衣藻)中存在大量的GSH。检测的其他硫醇包括半胱氨酸、γ-谷氨酰半胱氨酸、硫代硫酸盐、辅酶A和硫化物;还检测到几种未鉴定的硫醇。许多检测的生物体还表现出将mBBr还原为顺式-(甲基,甲基)二苯甲烷的显著能力,在用2-吡啶二硫化物或5,5'-双硫代-(2-硝基苯甲酸)处理后,该能力在与mBBr反应之前被淬灭。这些观察结果表明存在一种能够将电子转移到mBBr并还原活性二硫化物的还原系统。GSH在光合真细菌中的分布表明,GSH合成在氧光合作用进化之时或前后进化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验