Thompson W R, Henry T, Khare B N, Flynn L, Schwartz J, Sagan C
Laboratory for Planetary Studies, Cornell University, Ithaca, New York, USA.
J Geophys Res. 1987 Dec 30;92(A13):15083-92. doi: 10.1029/ja092ia13p15083.
Voyager 2 found that the Uranian magnetosphere has a substantial flux of energetic charged particles, which becomes rich in higher energies at low magnetospheric L near the orbit of Miranda. The electrons precipitate to produce aurorae, which have been observed in the ultraviolet. The more energetic component of the precipitating electrons can initiate radiation chemistry in the methane-poor stratosphere, near 0.1 mbar where the CH4 mole fraction XCH4 approximately equal to 10(-5). We present laboratory results for cold plasma (glow) discharge in continuous flow H2-He-CH4 atmospheres with mol fractions XCH4 = 10(-2) to 10(-3) and total pressure p = 60 to 0.6 mbar. The yields of simple hydrocarbons in these experiments and an estimate of precipitating electron flux consistent with the Voyager ultraviolet spectroscopy results indicate the globally averaged auroral processing rate of CH4 to higher hydrocarbons approximately equal to 3 x 10(6) C cm-2 s-1, comparable to the globally averaged photochemical production rate. The local rate approximately 2 x 10(8) C cm-2 s-1 in the auroral zones (approximately 20 degrees in diameter) at 15 degrees S and 45 degrees N latitude greatly exceeds the photochemical rate. Even at very low XCH4 approximately equal to 10(-3) the yield (summed over all products) G > approximately 10(-2) C/100 eV and the average slope alpha = <log10¿eta sigma [C eta Hx]/(eta - 1) sigma [C eta - 1 Hx]¿> > approximately -0.4, where the summation is over all product molecules of a given carbon number eta and the square brackets denote abundance. The yield therefore decreases slowly with molecular complexity: hydrocarbons through C7Hx should be present in auroral zones at abundances > approximately 10(-2) of the simplest C2 hydrocarbons. Saturated hydrocarbons (C2H6, C3H8, C4H10, etc.) are mostly shielded from photodissociation by C2H2 and will therefore persist at the sunlit, as well as the currently dark, magnetic polar regions.
“旅行者2号”发现天王星磁层有大量高能带电粒子,在靠近米兰达轨道的低磁层L值处,高能粒子更为丰富。电子沉降产生极光,已在紫外线波段观测到。沉降电子中能量更高的成分能在甲烷含量低的平流层(约0.1毫巴,甲烷摩尔分数XCH4约等于10^(-5))引发辐射化学过程。我们给出了在连续流动的H2-He-CH4气氛中冷等离子体(辉光)放电的实验室结果,甲烷摩尔分数XCH4 = 10^(-2)至10^(-3),总压力p = 60至0.6毫巴。这些实验中简单碳氢化合物的产率以及与“旅行者号”紫外光谱结果一致的沉降电子通量估计表明,甲烷向高级碳氢化合物的全球平均极光处理速率约等于3×10^6 C cm^(-2) s^(-1),与全球平均光化学产生速率相当。在南纬15度和北纬45度的极光区(直径约20度),局部速率约为2×10^8 C cm^(-2) s^(-1),大大超过光化学速率。即使在非常低的XCH4约等于10^(-3)时,产率(所有产物总和)G > 约10^(-2) C/100 eV,平均斜率α = <log10 ησ[CηHx]/(η - 1)σ[Cη - 1Hx]> > 约 -0.4,其中求和是对给定碳原子数η的所有产物分子进行的,方括号表示丰度。因此,产率随分子复杂性缓慢降低:碳数为C7Hx及以下的碳氢化合物在极光区的丰度应大于最简单的C2碳氢化合物的约10^(-2)。饱和碳氢化合物(C2H6、C3H8、C4H10等)大多被C2H2屏蔽而免受光解,因此将在阳光照射的以及目前黑暗的磁极区域持续存在。