Krimigis S M, Armstrong T P, Axford W I, Bostrom C O, Cheng A F, Gloeckler G, Hamilton D C, Keath E P, Lanzerotti L J, Mauk B H, Van Allen J A
Science. 1989 Dec 15;246(4936):1483-9. doi: 10.1126/science.246.4936.1483.
The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts </= E </= 20 megaelectron volts) and ions (28 keV </= E </= 150 MeV) in several energy channels, including compositional information at higher (>/=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the absence of an accurate magnetic-field model close to the planet. Other results indude the absence of upstream ion increases or energetic neutrals [particle intensity (j) < 2.8 x 10(-3) cm(-2) s(-1) keV(-1) near 35 keV, at approximately 40 R(N)] implying an upper limit to the volume-averaged atomic H density at R </= 6 R(N) of </= 20 cm(-3); and an estimate of the rate of darkening of methane ice at the location of 1989N1 ranging from approximately 10(5) years (1-micrometer depth) to approximately 2 x 10(6) years (10-micrometers depth). Finally, the electron fluxes at the orbit of Triton represent a power input of approximately 10(9) W into its atmosphere, apparently accounting for the observed ultraviolet auroral emission; by contrast, the precipitating electron (>22 keV) input on Neptune is approximately 3 x 10(7) W, surprisingly small when compared to energy input into the atmosphere of Jupiter, Saturn, and Uranus.
“旅行者2号”上的低能带电粒子(LECP)仪器在海王星磁层内,利用各种配置的固态探测器阵列,在几个能量通道中测量了高能电子(22千电子伏特≤E≤20兆电子伏特)和离子(28千电子伏特≤E≤150兆电子伏特),包括更高能量(≥0.5兆电子伏特每核子)下的成分信息。目前得到的结果可总结如下:(i)各种强度、光谱和各向异性特征表明,卫星海卫一在控制海王星磁层外部区域方面很重要。这些特征包括在14.4倍海王星半径(R(N),其中R(N)为海王星半径)之外不存在更高能量(≥150千电子伏特)的离子或电子,在海卫一径向距离处低能电子光谱指数的相对峰值,以及质子光谱从外部γ≥3.8的幂律分布,变为卫星轨道内的热麦克斯韦分布(kT未知,约55千电子伏特)。(ii)在最接近时,所有能量下的强度都急剧下降,能量越高下降时间越长,这让人想起航天器在低空穿越地球极地地区的情况;同时,还观测到了几个光谱较软的电子和质子尖峰(功率输入约为5×10⁻⁴尔格每平方厘米每秒),表明海王星存在极光过程。(iii)成分测量揭示了氢(H)、氢气(H₂)和氦-4(He⁴)的存在,相对丰度为1300:1:0.1,这表明捕获粒子群体的源来自海王星电离层。(iv)在E≥28千电子伏特时,等离子体压力在磁赤道处最大,β约为0.2,这表明磁层相对空旷,与天王星类似。(v)在入轨和出轨时都观测到了卫星1989N1的潜在特征;卫星和环的其他可能特征在数据中很明显,但在没有靠近行星精确磁场模型的情况下无法明确识别。其他结果包括不存在上游离子增加或高能中性粒子[在约40倍海王星半径处,能量约35千电子伏特附近,粒子强度(j)<2.8×10⁻³每平方厘米每秒千电子伏特],这意味着在R≤6倍海王星半径处,体积平均原子氢密度的上限≤20每立方厘米;以及对1989N1位置处甲烷冰变暗速率的估计,范围从约10⁵年(1微米深度)到约2×10⁶年(10微米深度)。最后,海卫一轨道处的电子通量向其大气层输入的功率约为10⁹瓦,显然这就是观测到的紫外极光发射源;相比之下,海王星上沉降电子(>22千电子伏特)的输入约为3×10⁷瓦,与木星、土星和天王星大气层的能量输入相比,小得出奇。