Suppr超能文献

通过岩浆和气态冲击冷却,火星陨石艾伦山84001中碳氢化合物的非生物起源。

An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases.

作者信息

Shock E L

机构信息

Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130-4899, USA.

出版信息

Meteorit Planet Sci. 2000 May;35(3):629-38. doi: 10.1111/j.1945-5100.2000.tb01443.x.

Abstract

Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.

摘要

利用亚稳平衡的热力学计算来评估火星陨石阿伦山(ALH)84001中脂肪族和多环芳烃(PAHs)非生物合成的可能性。计算结果表明,在被困岩浆或撞击产生的气体快速冷却过程中,低于约250 - 300摄氏度时,PAHs和正构烷烃可由一氧化碳、二氧化碳和氢气亚稳形成。根据温度、总体成分和氧化还原条件,PAHs和正构烷烃可同时或分别形成。此外,与正构烷烃相比,PAHs能在更低的H/C比、更高的CO/CO2比和更高的温度下形成。H/C比小于约0.01 - 0.001的干燥条件以及高CO/CO2比也有利于未烷基化PAHs的形成。在ALH 84001中观察到的PAHs丰度、其低烷基化程度以及可变但较高的芳烃与脂肪烃比例,均对应于岩浆和撞击气体中的低H/C比和高CO/CO2比,可用于推断这些比例的空间变化。一些碳氢化合物可能由被困的岩浆气体形成,特别是如果冷却速度足够快以防止再平衡。我们认为,ALH 84001随后的撞击加热可能导致碳酸亚铁解离产生细粒磁铁矿,形成富含CO的局部气相,将水蒸气还原为氢气,使被困的岩浆气体再平衡,使先前形成的碳氢化合物芳构化,以及对岩浆气体合成(如果有的话)进行叠加。富含CO、H2的撞击气体的快速冷却和高温淬火可能导致磁铁矿催化的碳氢化合物合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验