Suppr超能文献

衰老和病理状态下的胶质扩散屏障

Glial diffusion barriers during aging and pathological states.

作者信息

Syková E

机构信息

Department of Neuroscience, 2nd Medical Faculty, Charles University, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic.

出版信息

Prog Brain Res. 2001;132:339-63. doi: 10.1016/S0079-6123(01)32087-3.

Abstract

In conclusion, glial cells control not only ECS ionic composition, but also ECS size and geometry. Since ECS ionic and volume changes have been shown to play an important role in modulating the complex synaptic and extrasynaptic signal transmission in the CNS, glial cells may thus affect neuronal interaction, synchronization and neuron-glia communication. As shown in Fig. 2, a link between ionic and volume changes and signal transmission has been proposed as a model for the non-specific feedback mechanism suppressing neuronal activity (Syková, 1997; Ransom, 2000). First, neuronal activity results in the accumulation of [K+]e, which in turn depolarizes glial cells, and this depolarization induces an alkaline shift in glial pHi. Second, the glial cells extrude acid and the resulting acid shift causes a decrease in the neuronal excitability. Because ionic transmembrane shifts are always accompanied by water, this feedback mechanism is amplified by activity-related glial swelling compensated for by ECS volume shrinkage and by increased tortuosity, presumably by the crowding of molecules of the ECS matrix and/or by the swelling of fine glial processes. This, in turn, results in a larger accumulation of ions and other neuroactive substances in the brain due to increased diffusion hinderance in the ECS. Astrocyte hypertrophy, proliferation and swelling influence the size of the ECS volume and tortuosity around neurons, slowing diffusion in the ECS. Their organization may also affect diffusion anisotropy, which could be an underlying mechanism for the specificity of extrasynaptic transmission, including 'cross-talk' between distinct synapses (Barbour and Hausser, 1997; Kullmann and Asztely, 1998). An increased concentration of transmitter released into a synapse (e.g. repetitive adequate stimuli or during high frequency electrical stimulation which induces LTP) results in a significant activation of high-affinity receptors at neighboring synapses. The efficacy of such synaptic cross-talk would be dependent on the extracellular space surrounding the synapses, i.e. on intersynaptic geometry and diffusion parameters. Other recent studies have also suggested an important role for proteoglycans, known to participate in multiple cellular processes, such as axonal outgrowth, axonal branching and synaptogenesis (Hardington and Fosang, 1992; Margolis and Margolis, 1993) that are important for the formation of memory traces. Recent observation of a decrease of fibronectin and chondroitin sulfate proteoglycan staining in the hippocampus of behaviorally impaired aged rats (Syková et al., 1998a,b) supports this hypothesis. It is reasonable to assume that besides neuronal and glial processes, macromolecules of the extracellular matrix contribute to diffusion barriers in the ECS. It is therefore apparent that glial cells play an important role in the local architecture of the CNS and they may also be involved in the modulation of signal transmission, in plastic changes, LTP, LTD and in changes of behavior and memory formation.

摘要

总之,神经胶质细胞不仅控制细胞外空间(ECS)的离子组成,还控制其大小和几何形状。由于已表明ECS的离子和体积变化在调节中枢神经系统(CNS)中复杂的突触和突触外信号传递方面发挥重要作用,因此神经胶质细胞可能会影响神经元间的相互作用、同步性以及神经元与神经胶质细胞间的通讯。如图2所示,离子和体积变化与信号传递之间的联系已被提出作为抑制神经元活动的非特异性反馈机制模型(Syková,1997;Ransom,2000)。首先,神经元活动导致细胞外[K+]积累,进而使神经胶质细胞去极化,这种去极化诱导神经胶质细胞内pH值发生碱性偏移。其次,神经胶质细胞排出酸性物质,由此产生的酸性偏移导致神经元兴奋性降低。由于离子跨膜移动总是伴随着水的移动,这种反馈机制会因与活动相关的神经胶质细胞肿胀(由ECS体积收缩和曲折度增加所补偿,推测是由于ECS基质分子拥挤和/或神经胶质细胞细突起肿胀)而被放大。这反过来又会由于ECS中扩散阻碍增加而导致大脑中离子和其他神经活性物质的积累增多。星形胶质细胞肥大、增殖和肿胀会影响神经元周围ECS体积的大小和曲折度,减缓ECS中的扩散。它们的组织结构也可能影响扩散各向异性,这可能是突触外传递特异性的潜在机制,包括不同突触之间的“串扰”(Barbour和Hausser,1997;Kullmann和Asztely,1998)。释放到突触中的递质浓度增加(例如重复的适宜刺激或在诱导长时程增强(LTP)的高频电刺激期间)会导致相邻突触处高亲和力受体的显著激活。这种突触串扰的效能将取决于突触周围的细胞外空间,即取决于突触间的几何形状和扩散参数。其他近期研究也表明蛋白聚糖具有重要作用,已知其参与多种细胞过程,如轴突生长、轴突分支和突触形成(Hardington和Fosang,1992;Margolis和Margolis,1993),这些过程对记忆痕迹的形成很重要。近期观察到行为受损的老年大鼠海马中纤连蛋白和硫酸软骨素蛋白聚糖染色减少(Syková等人,1998a,b)支持了这一假说。有理由推测,除了神经元和神经胶质细胞突起外,细胞外基质的大分子也对ECS中的扩散屏障有贡献。因此很明显,神经胶质细胞在CNS的局部结构中起重要作用,它们也可能参与信号传递的调节、可塑性变化、LTP、LTD以及行为和记忆形成的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验