Suppr超能文献

癫痫发作时细胞外空间的离子变化及大小改变。

Ionic changes and alterations in the size of the extracellular space during epileptic activity.

作者信息

Lux H D, Heinemann U, Dietzel I

出版信息

Adv Neurol. 1986;44:619-39.

PMID:3518349
Abstract

Experiments with ion-selective microelectrodes revealed that a considerable activity of K ions appears temporarily in the extracellular space (ES) during enhanced neuronal activity and is removed from the ES by diffusion, active uptake, and entry into glial cells. The glial uptake results from the preferential glial K permeability and spatial glial K buffering. The glia responds to the local extracellular accumulation by a depolarization of the exposed part of its membrane. This depolarization will spread along the glial syncytium or extended glial cells. At sites where the extracellular K concentration has not yet increased, the membrane potential will thus be depolarized with respect to the K diffusion potential. Here K will move from the intra- into the extracellular space, in order to restore the electrochemical equilibrium. This induces a current that carries K into glial cells at sites of maximal K accumulation and that transports K out of glial cells at remote areas. In this way K is spatially redistributed. The corresponding current loop in the ES is predominantly carried by Na and Cl, the majority ions. Thus, Na and Ca are transported to the site of K accumulation while Cl moves away. The Cl and K ions are only partially replaced by Na. Hence, a decrease of extracellular osmolarity results, which leads to a water flux from the ES into the cells, inducing a shrinkage of the ES at sites of maximal K accumulation. At remote sites, the opposite effect is expected due to K flow out of glia and Cl transport to these sites. Thus, remote from the area of maximal neuronal activity, an increase of the ES is expected. This mechanism can explain the measured depth profile of the changes in the ES. At sites of maximal neuronal activity, the extracellular space undergoes a reduction by more than 30%. The ionic changes are accompanied by slow negative potential shifts. An increase in intracellular osmolarity due to enhanced metabolic activity and possibly KCl uptake mechanisms contributes to the changes in volume and ionic concentration. Model calculations of the after-effects of the loss of positive charges from the extracellular space and the K-specific glial buffering could predict size and time course of these changes. Experimental tests of this view include observations during epileptiform activity in gliotic scar foci as well as in hippocampal slices with depressed synaptic transmission. The extra- and intracellular ionic changes influence the generation, spread, and termination of seizure activity.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

使用离子选择性微电极进行的实验表明,在神经元活动增强期间,细胞外空间(ES)中会暂时出现相当活跃的钾离子,这些钾离子通过扩散、主动摄取以及进入神经胶质细胞而从ES中被清除。神经胶质细胞的摄取源于其对钾离子的优先通透性和空间性的钾离子缓冲作用。神经胶质细胞对局部细胞外钾离子的积累会通过其细胞膜暴露部分的去极化做出反应。这种去极化会沿着神经胶质细胞合体或伸展的神经胶质细胞传播。在细胞外钾离子浓度尚未升高的部位,膜电位相对于钾离子扩散电位会发生去极化。在这里,钾离子会从细胞内移动到细胞外空间,以恢复电化学平衡。这会诱导出一股电流,该电流在钾离子积累最多的部位将钾离子带入神经胶质细胞,并在较远区域将钾离子从神经胶质细胞中运出。通过这种方式,钾离子在空间上重新分布。ES中相应的电流回路主要由钠离子和氯离子(主要离子)携带。因此,钠离子和钙离子被运输到钾离子积累的部位,而氯离子则远离该部位。氯离子和钾离子只是部分地被钠离子取代。因此,细胞外渗透压会降低,这会导致水从ES流入细胞,从而在钾离子积累最多的部位引起ES收缩。在较远的部位,由于钾离子从神经胶质细胞流出以及氯离子运输到这些部位,预计会出现相反的效果。因此,在远离最大神经元活动区域的地方,预计ES会增大。这种机制可以解释所测量到的ES变化的深度分布情况。在最大神经元活动部位,细胞外空间会减少超过30%。离子变化伴随着缓慢的负电位偏移。由于代谢活动增强以及可能的氯化钾摄取机制导致的细胞内渗透压升高,促成了体积和离子浓度的变化。对细胞外空间正电荷损失的后效应以及钾离子特异性神经胶质细胞缓冲作用的模型计算,可以预测这些变化的大小和时间进程。对这一观点的实验验证包括在胶质瘢痕病灶以及突触传递受抑制的海马切片中癫痫样活动期间的观察。细胞内外的离子变化会影响癫痫发作活动的产生、传播和终止。(摘要截选至400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验