Suppr超能文献

一种基于概率求和的接收器操作特性(ROC)曲线的约束公式。

A constrained formulation for the receiver operating characteristic (ROC) curve based on probability summation.

作者信息

Swensson R G, King J L, Gur D

机构信息

Department of Radiology, University of Pittsburgh, Pennsylvania 15261, USA.

出版信息

Med Phys. 2001 Aug;28(8):1597-609. doi: 10.1118/1.1382604.

Abstract

We propose a principled formulation of the ROC curve that is constrained in a realistic way by the mechanism of probability summation. The constrained and conventional ROC formulations were fitted to 150 separate sets of rating data taken from previous observer studies of 250 or 529 chest radiographs. A total of 20 different readers had used either discrete or continuous rating scales to evaluate those chest cases for likelihood of separate specified abnormalities: interstitial disease, pulmonary nodule, pneumothorax, alveolar infiltrate, or rib fracture. Both ROC formulations were fitted separately to every set of rating data using maximum-likelihood statistical procedures that specified each ROC curve by normally distributed latent variables with two scaling parameters, and estimated the area below the ROC curve (Az) with its standard error. The conventional and constrained binormal formulations usually fitted ROC curves that were nearly indistinguishable in form and in Az. But when fitted to asymmetric rating data that contained few false-positive cases, the conventional ROC curves often rose steeply, then flattened and extrapolated into an unrealistic upward "hook" at the higher false-positive rates. For those sets of rating data, the constrained ROC curves (without hooks) estimated larger values for Az with smaller standard errors. The constrained ROC formulation describes observers' ratings of cases at least as well as the conventional ROC, and always guarantees a realistic fitted curve for observer performance. Its estimated parameters are easy to interpret, and may also be used to predict observer accuracy in localizing the image abnormalities.

摘要

我们提出了一种基于概率求和机制以现实方式进行约束的ROC曲线的原则性公式。将受约束的和传统的ROC公式应用于从先前对250张或529张胸部X光片的观察者研究中获取的150组独立评级数据。共有20位不同的读者使用离散或连续评级量表来评估这些胸部病例中特定单独异常情况的可能性:间质性疾病、肺结节、气胸、肺泡浸润或肋骨骨折。使用最大似然统计程序将两种ROC公式分别应用于每组评级数据,该程序通过具有两个缩放参数的正态分布潜在变量来指定每条ROC曲线,并估计ROC曲线下面积(Az)及其标准误差。传统的和受约束的双正态公式通常拟合出在形式和Az上几乎无法区分的ROC曲线。但是,当应用于几乎没有假阳性病例的不对称评级数据时,传统的ROC曲线通常会急剧上升,然后变平并在较高的假阳性率处外推成一个不现实的向上“弯钩”。对于那些评级数据集,受约束的ROC曲线(无弯钩)估计出更大的Az值且标准误差更小。受约束的ROC公式至少与传统的ROC一样能描述观察者对病例的评级,并且始终能保证为观察者表现拟合出一条现实的曲线。其估计参数易于解释,还可用于预测观察者在定位图像异常方面的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验