Suppr超能文献

当拟合的双正态曲线呈现不合适的形状时估计ROC曲线下的面积。

Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.

作者信息

Bandos Andriy I, Guo Ben, Gur David

机构信息

Department of Biostatistics, University of Pittsburgh, 7137 Parran Hall, 130 DeSoto, Str., Pittsburgh, PA 15146.

Department of Biostatistics, University of Pittsburgh, 7137 Parran Hall, 130 DeSoto, Str., Pittsburgh, PA 15146.

出版信息

Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.

Abstract

RATIONALE AND OBJECTIVES

The "binormal" model is the most frequently used tool for parametric receiver operating characteristic (ROC) analysis. The binormal ROC curves can have "improper" (non-concave) shapes that are unrealistic in many practical applications, and several tools (eg, PROPROC) have been developed to address this problem. However, due to the general robustness of binormal ROCs, the improperness of the fitted curves might carry little consequence for inferences about global summary indices, such as the area under the ROC curve (AUC). In this work, we investigate the effect of severe improperness of fitted binormal ROC curves on the reliability of AUC estimates when the data arise from an actually proper curve.

MATERIALS AND METHODS

We designed theoretically proper ROC scenarios that induce severely improper shape of fitted binormal curves in the presence of well-distributed empirical ROC points. The binormal curves were fitted using maximum likelihood approach. Using simulations, we estimated the frequency of severely improper fitted curves, bias of the estimated AUC, and coverage of 95% confidence intervals (CIs). In Appendix S1, we provide additional information on percentiles of the distribution of AUC estimates and bias when estimating partial AUCs. We also compared the results to a reference standard provided by empirical estimates obtained from continuous data.

RESULTS

We observed up to 96% of severely improper curves depending on the scenario in question. The bias in the binormal AUC estimates was very small and the coverage of the CIs was close to nominal, whereas the estimates of partial AUC were biased upward in the high specificity range and downward in the low specificity range. Compared to a non-parametric approach, the binormal model led to slightly more variable AUC estimates, but at the same time to CIs with more appropriate coverage.

CONCLUSIONS

The improper shape of the fitted binormal curve, by itself, ie, in the presence of a sufficient number of well-distributed points, does not imply unreliable AUC-based inferences.

摘要

原理与目的

“双正态”模型是参数化接收器操作特性(ROC)分析中最常用的工具。双正态ROC曲线可能具有“不合适”(非凹形)的形状,这在许多实际应用中是不现实的,并且已经开发了几种工具(例如,PROPROC)来解决这个问题。然而,由于双正态ROC的一般稳健性,拟合曲线的不合适性对于关于全局汇总指标(例如ROC曲线下面积(AUC))的推断可能影响很小。在这项工作中,我们研究了当数据来自实际合适的曲线时,拟合的双正态ROC曲线的严重不合适性对AUC估计可靠性的影响。

材料与方法

我们设计了理论上合适的ROC场景,在存在分布良好的经验ROC点的情况下,这些场景会导致拟合的双正态曲线出现严重不合适的形状。使用最大似然法拟合双正态曲线。通过模拟,我们估计了严重不合适的拟合曲线的频率、估计AUC的偏差以及95%置信区间(CI)的覆盖率。在附录S1中,我们提供了关于估计部分AUC时AUC估计分布的百分位数和偏差的额外信息。我们还将结果与从连续数据获得的经验估计提供的参考标准进行了比较。

结果

根据所讨论的场景,我们观察到高达96%的严重不合适曲线。双正态AUC估计中的偏差非常小,CI的覆盖率接近名义值,而部分AUC的估计在高特异性范围内向上偏差,在低特异性范围内向下偏差。与非参数方法相比,双正态模型导致的AUC估计略有更多变化,但同时CI的覆盖率更合适。

结论

拟合的双正态曲线的不合适形状本身,即在存在足够数量分布良好的点的情况下,并不意味着基于AUC的推断不可靠。

相似文献

1
Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.
Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.
3
Equivalence of binormal likelihood-ratio and bi-chi-squared ROC curve models.
Stat Med. 2016 May 30;35(12):2031-57. doi: 10.1002/sim.6816. Epub 2015 Nov 25.
5
Using the mean-to-sigma ratio as a measure of the improperness of binormal ROC curves.
Acad Radiol. 2011 Feb;18(2):143-54. doi: 10.1016/j.acra.2010.09.002.
6
Reliable and computationally efficient maximum-likelihood estimation of "proper" binormal ROC curves.
Acad Radiol. 2007 Jul;14(7):814-29. doi: 10.1016/j.acra.2007.03.012.
7
Limitations to the robustness of binormal ROC curves: effects of model misspecification and location of decision thresholds on bias, precision, size and power.
Stat Med. 1997 Mar 30;16(6):669-79. doi: 10.1002/(sici)1097-0258(19970330)16:6<669::aid-sim489>3.0.co;2-q.
8
On the use of partial area under the ROC curve for comparison of two diagnostic tests.
Biom J. 2015 Mar;57(2):304-20. doi: 10.1002/bimj.201400023. Epub 2014 Dec 23.
9
A comparison of parametric and nonparametric approaches to ROC analysis of quantitative diagnostic tests.
Med Decis Making. 1997 Jan-Mar;17(1):94-102. doi: 10.1177/0272989X9701700111.

引用本文的文献

1
Calculation of Sensitivity and Specificity from Partial Data for Meta-Analyses: Introducing Some Practical Methods.
Arch Acad Emerg Med. 2025 Jul 11;13(1):e56. doi: 10.22037/aaemj.v13i1.2678. eCollection 2025.
4
[Application of two noninvasive scores in predicting the risk of respiratory failure in full-term neonates: a comparative analysis].
Zhongguo Dang Dai Er Ke Za Zhi. 2022 Apr 15;24(4):423-427. doi: 10.7499/j.issn.1008-8830.2110023.
5
A note on modeling placement values in the analysis of receiver operating characteristic curves.
Biostat Epidemiol. 2021;5(2):118-133. doi: 10.1080/24709360.2020.1737794. Epub 2020 Mar 22.
6
Metrics for Evaluating Polygenic Risk Scores.
JNCI Cancer Spectr. 2020 Dec 23;5(1). doi: 10.1093/jncics/pkaa106. eCollection 2021 Feb.
7
A unified Bayesian framework for exact inference of area under the receiver operating characteristic curve.
Stat Methods Med Res. 2021 Oct;30(10):2269-2287. doi: 10.1177/09622802211037070. Epub 2021 Sep 1.
8
A 17-Gene Signature Predicted Prognosis in Renal Cell Carcinoma.
Dis Markers. 2020 Feb 26;2020:8352809. doi: 10.1155/2020/8352809. eCollection 2020.
9
Reliability and validity of the translated Chinese version of Autism Spectrum Rating Scale (2-5 years).
World J Pediatr. 2019 Feb;15(1):49-56. doi: 10.1007/s12519-018-0201-3. Epub 2018 Nov 16.

本文引用的文献

1
Equivalence of binormal likelihood-ratio and bi-chi-squared ROC curve models.
Stat Med. 2016 May 30;35(12):2031-57. doi: 10.1002/sim.6816. Epub 2015 Nov 25.
2
On use of partial area under the ROC curve for evaluation of diagnostic performance.
Stat Med. 2013 Sep 10;32(20):3449-58. doi: 10.1002/sim.5777. Epub 2013 Mar 18.
3
Using the mean-to-sigma ratio as a measure of the improperness of binormal ROC curves.
Acad Radiol. 2011 Feb;18(2):143-54. doi: 10.1016/j.acra.2010.09.002.
5
Assessment of medical imaging systems and computer aids: a tutorial review.
Acad Radiol. 2007 Jun;14(6):723-48. doi: 10.1016/j.acra.2007.03.001.
6
Diagnostic performance of digital versus film mammography for breast-cancer screening.
N Engl J Med. 2005 Oct 27;353(17):1773-83. doi: 10.1056/NEJMoa052911. Epub 2005 Sep 16.
7
Effects of luminance and resolution on observer performance with chest radiographs.
Radiology. 2000 Apr;215(1):169-74. doi: 10.1148/radiology.215.1.r00ap34169.
8
Confidence intervals for the receiver operating characteristic area in studies with small samples.
Acad Radiol. 1998 Aug;5(8):561-71. doi: 10.1016/s1076-6332(98)80208-0.
9
Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices.
Stat Med. 1997 Jul 15;16(13):1529-42. doi: 10.1002/(sici)1097-0258(19970715)16:13<1529::aid-sim565>3.0.co;2-h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验