Suppr超能文献

由视觉搜索模型预测的ROC曲线。

ROC curves predicted by a model of visual search.

作者信息

Chakraborty D P

机构信息

Department of Radiology, University of Pittsburgh, 3520 5th Avenue, Suite 300, Pittsburgh, PA 15261, USA.

出版信息

Phys Med Biol. 2006 Jul 21;51(14):3463-82. doi: 10.1088/0031-9155/51/14/013. Epub 2006 Jul 6.

Abstract

In imaging tasks where the observer is uncertain whether lesions are present, and where they could be present, the image is searched for lesions. In the free-response paradigm, which closely reflects this task, the observer provides data in the form of a variable number of mark-rating pairs per image. In a companion paper a statistical model of visual search has been proposed that has parameters characterizing the perceived lesion signal-to-noise ratio, the ability of the observer to avoid marking non-lesion locations, and the ability of the observer to find lesions. The aim of this work is to relate the search model parameters to receiver operating characteristic (ROC) curves that would result if the observer reported the rating of the most suspicious finding on an image as the overall rating. Also presented are the probability density functions (pdfs) of the underlying latent decision variables corresponding to the highest rating for normal and abnormal images. The search-model-predicted ROC curves are 'proper' in the sense of never crossing the chance diagonal and the slope is monotonically changing. They also have the interesting property of not allowing the observer to move the operating point continuously from the origin to (1, 1). For certain choices of parameters the operating points are predicted to be clustered near the initial steep region of the curve, as has been observed by other investigators. The pdfs are non-Gaussians, markedly so for the abnormal images and for certain choices of parameter values, and provide an explanation for the well-known observation that experimental ROC data generally imply a wider pdf for abnormal images than for normal images. Some features of search-model-predicted ROC curves and pdfs resemble those predicted by the contaminated binormal model, but there are significant differences. The search model appears to provide physical explanations for several aspects of experimental ROC curves.

摘要

在成像任务中,若观察者不确定是否存在病变,且病变有可能存在时,就要在图像中搜索病变。在自由反应范式中,它紧密反映了此任务,观察者以每张图像可变数量的标记-评级对的形式提供数据。在一篇配套论文中,提出了一种视觉搜索统计模型,该模型具有表征感知到的病变信噪比、观察者避免标记非病变位置的能力以及观察者发现病变的能力的参数。这项工作的目的是将搜索模型参数与接收者操作特征(ROC)曲线相关联,这些曲线是如果观察者将图像上最可疑发现的评级报告为总体评级时会得到的曲线。还给出了与正常图像和异常图像最高评级相对应的潜在潜在决策变量的概率密度函数(pdf)。搜索模型预测的ROC曲线在从不与机遇对角线交叉且斜率单调变化的意义上是“恰当的”。它们还具有有趣的特性,即不允许观察者将操作点从原点连续移动到(1, 1)。对于某些参数选择,预测操作点会聚集在曲线的初始陡峭区域附近,正如其他研究者所观察到的那样。这些pdf是非高斯分布的,对于异常图像以及某些参数值选择而言尤其明显,并且为一个众所周知的观察结果提供了解释,即实验ROC数据通常意味着异常图像的pdf比正常图像更宽。搜索模型预测的ROC曲线和pdf的一些特征类似于污染双正态模型预测的特征,但也存在显著差异。搜索模型似乎为实验ROC曲线的几个方面提供了物理解释。

相似文献

1
ROC curves predicted by a model of visual search.
Phys Med Biol. 2006 Jul 21;51(14):3463-82. doi: 10.1088/0031-9155/51/14/013. Epub 2006 Jul 6.
2
A search model and figure of merit for observer data acquired according to the free-response paradigm.
Phys Med Biol. 2006 Jul 21;51(14):3449-62. doi: 10.1088/0031-9155/51/14/012. Epub 2006 Jul 6.
4
Recent advances in observer performance methodology: jackknife free-response ROC (JAFROC).
Radiat Prot Dosimetry. 2005;114(1-3):26-31. doi: 10.1093/rpd/nch512.
5
Equivalence of binormal likelihood-ratio and bi-chi-squared ROC curve models.
Stat Med. 2016 May 30;35(12):2031-57. doi: 10.1002/sim.6816. Epub 2015 Nov 25.
6
ROC Curve for Extremely Subtle Lung Nodules on Chest Radiographs Confirmed by CT Scan.
Acad Radiol. 2016 Mar;23(3):297-303. doi: 10.1016/j.acra.2015.11.014. Epub 2016 Jan 7.
7
A contaminated binormal model for ROC data: Part III. Initial evaluation with detection ROC data.
Acad Radiol. 2000 Jun;7(6):438-47. doi: 10.1016/s1076-6332(00)80384-0.
9
Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.
Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.
10
Proper ROC analysis and joint ROC analysis of the satisfaction of search effect in chest radiology.
Acad Radiol. 2000 Nov;7(11):945-58. doi: 10.1016/s1076-6332(00)80176-2.

引用本文的文献

1
ROC or FROC? It depends on the research question.
Med Phys. 2017 May;44(5):1603-1606. doi: 10.1002/mp.12151. Epub 2017 Mar 17.
3
A brief history of free-response receiver operating characteristic paradigm data analysis.
Acad Radiol. 2013 Jul;20(7):915-9. doi: 10.1016/j.acra.2013.03.001. Epub 2013 Apr 12.
4
Application of threshold-bias independent analysis to eye-tracking and FROC data.
Acad Radiol. 2012 Dec;19(12):1474-83. doi: 10.1016/j.acra.2012.09.002. Epub 2012 Oct 4.
6
New developments in observer performance methodology in medical imaging.
Semin Nucl Med. 2011 Nov;41(6):401-18. doi: 10.1053/j.semnuclmed.2011.07.001.
7
Recent developments in imaging system assessment methodology, FROC analysis and the search model.
Nucl Instrum Methods Phys Res A. 2011 Aug 21;648 Supplement 1:S297-S301. doi: 10.1016/j.nima.2010.11.042.
9
Clinical relevance of the ROC and free-response paradigms for comparing imaging system efficacies.
Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):37-41. doi: 10.1093/rpd/ncq017. Epub 2010 Feb 5.
10
A status report on free-response analysis.
Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):20-5. doi: 10.1093/rpd/ncp305. Epub 2010 Jan 18.

本文引用的文献

4
A contaminated binormal model for ROC data: Part II. A formal model.
Acad Radiol. 2000 Jun;7(6):427-37. doi: 10.1016/s1076-6332(00)80383-9.
5
A contaminated binormal model for ROC data: Part I. Some interesting examples of binormal degeneracy.
Acad Radiol. 2000 Jun;7(6):420-6. doi: 10.1016/s1076-6332(00)80382-7.
6
"Proper" Binormal ROC Curves: Theory and Maximum-Likelihood Estimation.
J Math Psychol. 1999 Mar;43(1):1-33. doi: 10.1006/jmps.1998.1218.
7
Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data.
Stat Med. 1998 May 15;17(9):1033-53. doi: 10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z.
8
Proper receiver operating characteristic analysis: the bigamma model.
Acad Radiol. 1997 Feb;4(2):138-49. doi: 10.1016/s1076-6332(97)80013-x.
10
A visual concept shapes image perception.
Radiology. 1983 Feb;146(2):363-8. doi: 10.1148/radiology.146.2.6849084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验