Suppr超能文献

用于培养皿中菌落自动计数(自动菌落计数)的有效目标识别

Effective object recognition for automated counting of colonies in Petri dishes (automated colony counting).

作者信息

Marotz J, Lübbert C, Eisenbeiss W

机构信息

Medical University of Lübeck, Clinic for Plastic Surgery, Ratzeburger Allee 160 D-23538 Lübeck, Germany.

出版信息

Comput Methods Programs Biomed. 2001 Sep;66(2-3):183-98. doi: 10.1016/s0169-2607(00)00128-0.

Abstract

Determination of the number of colonies (colony forming units, CFU) is a standard method in microbiological analysis to ensure the quality of drinking water. Normally this tedious work is still performed manually. A PC-based method for the automated counting of digitized images of Petri dishes is presented. The method includes highly specific and effective object recognition algorithms that ensure very high detection accuracy. The processing sequence implies internal controls therefore enabling reliable automated evaluations of series of images. Use of the Fuzzy formalism and the high adaptivity of the algorithms lead to an extraordinary user-friendliness. For digitization different devices like flatbed scanners or CCD-cameras can be used. Due to the highly adaptive algorithms samples from the routine standard preparation process in laboratories can be evaluated. The accuracy and quality of the method aim at advancement in objectivity of colony counting and quality control and assurance. The algorithms and the evaluation of the method are presented.

摘要

确定菌落数量(菌落形成单位,CFU)是微生物分析中确保饮用水质量的标准方法。通常,这项繁琐的工作仍需人工完成。本文提出了一种基于计算机的方法,用于自动计数培养皿的数字化图像。该方法包括高度特异性和有效的目标识别算法,可确保非常高的检测精度。处理序列包含内部控制,因此能够对一系列图像进行可靠的自动评估。模糊形式主义的应用和算法的高适应性带来了极高的用户友好性。对于数字化,可以使用平板扫描仪或CCD相机等不同设备。由于算法具有高度适应性,因此可以对实验室常规标准制备过程中的样本进行评估。该方法的准确性和质量旨在提高菌落计数的客观性以及质量控制与保证。本文介绍了该方法的算法和评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验