Firestone M K, Tiedje J M
Appl Microbiol. 1975 Jun;29(6):758-64. doi: 10.1128/am.29.6.758-764.1975.
A nitrilotriacetate (NTA)-degrading Pseudomonas species was shown to degrade Ca, Mn, Mg, Cu, Zn, Cd, Fe, and Na chelates of NTA at nearly equal rates when the appropriate metal concentrations are low enough to avoid toxicity from the freed metal. Ni-NTA, however, was not degraded. When higher concentrations of metal-NTA substrates were used, soil stimulated degradation of Cu, Zn, and Cd complexes, probably as a result of binding toxic freed metals. The metal associated with the NTA substrate does not appear to be transported into the cell, since metals do not accumulate in the cells and the presence of NTA reduces metal toxicity. The data are consistent with the hypothesis that an envelope-associated component, probably a transport protein involved in binding, is responsible for the disassociation of the metal from the NTA. Both soil and this NTA-degrading organism destabilize the metal-NTA complex, which suggests that in the natural environment both would act to limit mobilization of metals as soluble NTA chelates. Crude soluble enzyme preparations degrade Fe-, Mn-, and Na-NTA complexes but not Cu-NTA.
一种能降解次氮基三乙酸(NTA)的假单胞菌属菌株,当适当的金属浓度足够低以避免游离金属产生毒性时,它能以几乎相同的速率降解NTA的钙、锰、镁、铜、锌、镉、铁和钠螯合物。然而,镍 - NTA并未被降解。当使用更高浓度的金属 - NTA底物时,土壤促进了铜、锌和镉络合物的降解,这可能是由于结合了有毒的游离金属。与NTA底物结合的金属似乎并未转运到细胞内,因为金属不会在细胞中积累,并且NTA的存在降低了金属毒性。这些数据与如下假设一致:一种与细胞膜相关的成分,可能是一种参与结合的转运蛋白,负责金属与NTA的解离。土壤和这种降解NTA的生物体都会使金属 - NTA络合物不稳定,这表明在自然环境中,两者都将起到限制金属以可溶性NTA螯合物形式迁移的作用。粗制的可溶性酶制剂能降解铁 - NTA、锰 - NTA和钠 - NTA络合物,但不能降解铜 - NTA。