Suppr超能文献

假单胞菌属对金属-次氮基三乙酸配合物的生物降解:反应机制

Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction.

作者信息

Firestone M K, Tiedje J M

出版信息

Appl Microbiol. 1975 Jun;29(6):758-64. doi: 10.1128/am.29.6.758-764.1975.

Abstract

A nitrilotriacetate (NTA)-degrading Pseudomonas species was shown to degrade Ca, Mn, Mg, Cu, Zn, Cd, Fe, and Na chelates of NTA at nearly equal rates when the appropriate metal concentrations are low enough to avoid toxicity from the freed metal. Ni-NTA, however, was not degraded. When higher concentrations of metal-NTA substrates were used, soil stimulated degradation of Cu, Zn, and Cd complexes, probably as a result of binding toxic freed metals. The metal associated with the NTA substrate does not appear to be transported into the cell, since metals do not accumulate in the cells and the presence of NTA reduces metal toxicity. The data are consistent with the hypothesis that an envelope-associated component, probably a transport protein involved in binding, is responsible for the disassociation of the metal from the NTA. Both soil and this NTA-degrading organism destabilize the metal-NTA complex, which suggests that in the natural environment both would act to limit mobilization of metals as soluble NTA chelates. Crude soluble enzyme preparations degrade Fe-, Mn-, and Na-NTA complexes but not Cu-NTA.

摘要

一种能降解次氮基三乙酸(NTA)的假单胞菌属菌株,当适当的金属浓度足够低以避免游离金属产生毒性时,它能以几乎相同的速率降解NTA的钙、锰、镁、铜、锌、镉、铁和钠螯合物。然而,镍 - NTA并未被降解。当使用更高浓度的金属 - NTA底物时,土壤促进了铜、锌和镉络合物的降解,这可能是由于结合了有毒的游离金属。与NTA底物结合的金属似乎并未转运到细胞内,因为金属不会在细胞中积累,并且NTA的存在降低了金属毒性。这些数据与如下假设一致:一种与细胞膜相关的成分,可能是一种参与结合的转运蛋白,负责金属与NTA的解离。土壤和这种降解NTA的生物体都会使金属 - NTA络合物不稳定,这表明在自然环境中,两者都将起到限制金属以可溶性NTA螯合物形式迁移的作用。粗制的可溶性酶制剂能降解铁 - NTA、锰 - NTA和钠 - NTA络合物,但不能降解铜 - NTA。

相似文献

1
Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction.
Appl Microbiol. 1975 Jun;29(6):758-64. doi: 10.1128/am.29.6.758-764.1975.
2
Pathway of degradation of nitrilotriacetate by a Pseudomonas species.
Appl Environ Microbiol. 1978 May;35(5):955-61. doi: 10.1128/aem.35.5.955-961.1978.
3
Distribution of bacteria with nitrilotriacetate-degrading potential in an estuarine environment.
Appl Environ Microbiol. 1977 Oct;34(4):411-8. doi: 10.1128/aem.34.4.411-418.1977.
4
Metabolism of nitrilotriacetate by cells of Pseudomonas species.
Appl Microbiol. 1973 May;25(5):811-8. doi: 10.1128/am.25.5.811-818.1973.
5
Environmental fate and microbial degradation of aminopolycarboxylic acids.
FEMS Microbiol Rev. 2001 Jan;25(1):69-106. doi: 10.1111/j.1574-6976.2001.tb00572.x.
6
Activity and adaptation of nitrilotriacetate (NTA)-degrading bacteria: field and laboratory studies.
Water Res. 1990 Jul;24(7):875-81. doi: 10.1016/0043-1354(90)90137-u.
7
The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
Chemosphere. 2007 Aug;68(10):1920-8. doi: 10.1016/j.chemosphere.2007.02.058. Epub 2007 Apr 6.
8
Aerobic and anaerobic biodegradation of nitrilotriacetate in subsurface soils.
Ecotoxicol Environ Saf. 1986 Feb;11(1):112-25. doi: 10.1016/0147-6513(86)90032-1.
9
Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism.
Am J Physiol Cell Physiol. 2008 Sep;295(3):C708-21. doi: 10.1152/ajpcell.00029.2008. Epub 2008 Jun 25.
10
Uptake of iron and nitrilotriacetate (NTA) in rat liver and the toxic effect of Fe-NTA.
Acta Med Okayama. 1983 Oct;37(5):393-400. doi: 10.18926/AMO/32422.

引用本文的文献

1
From initial treatment design to final disposal of chelating agents: a review of corrosion and degradation mechanisms.
RSC Adv. 2022 Jan 12;12(3):1813-1833. doi: 10.1039/d1ra07272b. eCollection 2022 Jan 5.
2
Biodegradation of CuTETA, an effluent by-product in mineral processing.
Environ Sci Pollut Res Int. 2018 Jun;25(18):17393-17401. doi: 10.1007/s11356-018-1877-6. Epub 2018 Apr 13.
3
Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria.
Appl Environ Microbiol. 1997 Nov;63(11):4385-91. doi: 10.1128/aem.63.11.4385-4391.1997.
4
Microbial degradation of ethylenediaminetetraacetate in soils and sediments.
Appl Microbiol. 1975 Aug;30(2):327-9. doi: 10.1128/am.30.2.327-329.1975.
5
Influence of complex structure on the biodegradation of iron-citrate complexes.
Appl Environ Microbiol. 1993 Jan;59(1):109-13. doi: 10.1128/aem.59.1.109-113.1993.
6
Effects of chemical speciation on the mineralization of organic compounds by microorganisms.
Appl Environ Microbiol. 1985 Aug;50(2):342-9. doi: 10.1128/aem.50.2.342-349.1985.
7
Metal loading and enzymatic degradation of fungal cell walls and chitin.
Biometals. 1995 Jan;8(1):12-8. doi: 10.1007/BF00156152.
8
Effect of chemical speciation on the accumulation of cadmium by the caddisfly, Hydropsyche sp.
Bull Environ Contam Toxicol. 1982 Feb;28(2):172-80. doi: 10.1007/BF01608571.
9
Effects of cadmium, copper, magnesium, and zinc on the decomposition of citrate by a Klebsiella sp.
Appl Environ Microbiol. 1989 Jun;55(6):1375-9. doi: 10.1128/aem.55.6.1375-1379.1989.
10
Distribution of bacteria with nitrilotriacetate-degrading potential in an estuarine environment.
Appl Environ Microbiol. 1977 Oct;34(4):411-8. doi: 10.1128/aem.34.4.411-418.1977.

本文引用的文献

1
Metabolism of nitrilotriacetate by cells of Pseudomonas species.
Appl Microbiol. 1973 May;25(5):811-8. doi: 10.1128/am.25.5.811-818.1973.
2
The metabolism of nitrilotriacetate by a pseudomonad.
Biochem J. 1973 Dec;136(4):1059-68. doi: 10.1042/bj1361059.
4
Hydroxamic acids in nature.
Science. 1967 Jun 16;156(3781):1443-7. doi: 10.1126/science.156.3781.1443.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验