Suppr超能文献

非线性和超经典感受野特性与自然场景统计

Nonlinear and extra-classical receptive field properties and the statistics of natural scenes.

作者信息

Zetzsche C, Röhrbein F

机构信息

Institut für Medizinische Psychologie, Ludwig-Maximilians-Universität München, Germany.

出版信息

Network. 2001 Aug;12(3):331-50.

Abstract

The neural mechanisms of early vision can be explained in terms of an information-theoretic optimization of the neural processing with respect to the statistical properties of the natural environment. Recent applications of this approach have been successful in the prediction of the linear filtering properties of ganglion cells and simple cells, but the relations between the environmental statistics and cortical nonlinearities, like those of end-stopped or complex cells, are not yet fully understood. Here we present extensions of our previous investigations of the exploitation of higher-order statistics by nonlinear neurons. We use multivariate wavelet statistics to demonstrate that a strictly linear processing would inevitably leave substantial statistical dependencies between the outputs of the units. We then consider how the basic nonlinearities of cortical neurons--gain control and ON/OFF half-wave rectification--can exploit these higher-order statistical dependencies. We first show that gain control provides an adaptation to the polar separability of the multivariate probability density function (PDF), and, together with an output nonlinearity, enables an overcomplete sparse coding. We then consider how the remaining higher-order dependencies between different units can be exploited by a combination of basic ON/OFF point nonlinearities and subsequent weighted linear combinations. We consider two statistical optimization schemes for the computation of the optimal weights: principal component analysis (PCA) and independent component analysis (ICA). Since the intermediate nonlinearities transform some of the higher-order dependencies into second-order dependencies even the basic PCA approach is able to exploit part of the redundancies. ICA ignores this second-order structure, but can exploit higher-order dependencies. Both schemes yield a variety of nonlinear units which comprise the typical nonlinear processing properties, such as end-stopping, side-stopping, complex-cell properties and extra-classical receptive field properties, but the 'ideal' complex cells seem only to occur with PCA. Thus, a combination of ON/OFF nonlinearities with an integrated PCA-ICA strategy seems necessary to exploit the statistical properties of natural images.

摘要

早期视觉的神经机制可以根据神经处理相对于自然环境统计特性的信息理论优化来解释。这种方法最近的应用成功地预测了神经节细胞和简单细胞的线性滤波特性,但环境统计与皮质非线性(如终端抑制或复杂细胞的非线性)之间的关系尚未完全理解。在这里,我们展示了我们之前对非线性神经元利用高阶统计量研究的扩展。我们使用多变量小波统计来证明严格的线性处理将不可避免地在单元输出之间留下大量统计依赖性。然后,我们考虑皮质神经元的基本非线性——增益控制和开/关半波整流——如何利用这些高阶统计依赖性。我们首先表明,增益控制提供了对多变量概率密度函数(PDF)极性可分离性的适应,并且与输出非线性一起,实现了过完备稀疏编码。然后,我们考虑如何通过基本的开/关点非线性和随后的加权线性组合来利用不同单元之间剩余的高阶依赖性。我们考虑两种用于计算最优权重的统计优化方案:主成分分析(PCA)和独立成分分析(ICA)。由于中间非线性将一些高阶依赖性转换为二阶依赖性,即使是基本的PCA方法也能够利用部分冗余。ICA忽略了这种二阶结构,但可以利用高阶依赖性。两种方案都产生了各种具有典型非线性处理特性的非线性单元,如终端抑制、侧抑制、复杂细胞特性和超经典感受野特性,但“理想”的复杂细胞似乎只出现在PCA中。因此,开/关非线性与集成的PCA - ICA策略相结合似乎是利用自然图像统计特性所必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验