Suppr超能文献

自然图像中的二次型。

Quadratic forms in natural images.

作者信息

Hashimoto Wakako

机构信息

Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

出版信息

Network. 2003 Nov;14(4):765-88.

Abstract

Several studies have succeeded in correlating natural image statistics with receptive field properties of neurons in the primary visual cortex. If we determine the parameters of linear transformations that make their output values as independent as possible when input data are natural images, we obtain parameter values that correspond to simple cell characteristics. It was also proved that, by making output values as temporally coherent as possible, simple cell characteristics also emerge. However, complex cell properties have not been fully explained by previous studies of natural image statistics. In this study, we examine whether we could reproduce complex cell properties by determining the parameters of two-layer networks that make their outputs as independent and sparse as possible or as temporally coherent as possible. Input-output functions of two-layer networks correspond to quadratic forms and they form a class of functions that includes complex cell responses and many other functions. Therefore, we employed two-layer networks as a framework for discussing complex cell properties as in previous studies. By maximizing the independence and sparseness of output values of two-layer networks without considering the temporal structure of input images, squared responses of simple cells are obtained and complex cell properties are not reproduced. On the other hand, by maximizing the temporal coherence of output, we obtain complex cell properties among other kinds of input-output functions. In previous studies, the measure of temporal coherence was the squared difference between the responses to two consecutive input images. We obtain two-layer networks that minimize this measure and show that some of them exhibit properties of complex cells but not clearly. We propose the sparseness of difference between responses to two consecutive inputs as an alternative measure of temporal coherence. We formulate an algorithm to maximize the sparseness of difference and show that complex cell properties emerge more clearly.

摘要

多项研究已成功地将自然图像统计与初级视觉皮层中神经元的感受野特性联系起来。如果我们确定线性变换的参数,使得当输入数据为自然图像时其输出值尽可能独立,我们就能得到与简单细胞特征相对应的参数值。研究还证明,通过使输出值在时间上尽可能连贯,也会出现简单细胞特征。然而,先前关于自然图像统计的研究尚未完全解释复杂细胞的特性。在本研究中,我们探究是否可以通过确定两层网络的参数来重现复杂细胞的特性,这些参数能使网络输出尽可能独立、稀疏或在时间上尽可能连贯。两层网络的输入 - 输出函数对应于二次型,它们构成了一类包含复杂细胞响应及许多其他函数的函数。因此,与先前研究一样,我们采用两层网络作为讨论复杂细胞特性的框架。在不考虑输入图像的时间结构的情况下,通过最大化两层网络输出值的独立性和稀疏性,得到了简单细胞的平方响应,但未重现复杂细胞的特性。另一方面,通过最大化输出的时间连贯性,我们在其他类型的输入 - 输出函数中获得了复杂细胞的特性。在先前的研究中,时间连贯性的度量是对两个连续输入图像的响应之间的平方差。我们得到了使该度量最小化的两层网络,并表明其中一些网络表现出复杂细胞的特性,但并不明显。我们提出将对两个连续输入的响应之间差异的稀疏性作为时间连贯性的替代度量。我们制定了一种算法来最大化差异的稀疏性,并表明复杂细胞的特性出现得更加明显。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验