Suppr超能文献

基于分布法和锚定法在解释健康相关生活质量变化中的关系。

Relation of distribution- and anchor-based approaches in interpretation of changes in health-related quality of life.

作者信息

Norman G R, Sridhar F G, Guyatt G H, Walter S D

机构信息

Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.

出版信息

Med Care. 2001 Oct;39(10):1039-47. doi: 10.1097/00005650-200110000-00002.

Abstract

BACKGROUND

Approaches to interpretation of quality of life changes in clinical trials have fallen into two camps: those that rely on the distribution of changes and the Effect Size (ES), and those that use some external anchor, such as patient judgments of change, which is then used to compute a Minimally Important Difference (MID), the proportion benefiting from treatment, p(B), and the Number Needed to Treat (NNT).

OBJECTIVE

To examine the relationship between the ES and p(B), and the impact of the MID on this relationship.

METHODS

Simulation was used based on a normal distribution to compute the proportion of patients benefiting in both parallel group and crossover designs, for various values of the ES and the MID. The agreement of the simulation with empirical data from four studies of asthma and respiratory disease was assessed. The effect of skewness in the distributions of change scores on the relationship between ES and p(B) was also examined.

RESULTS

The simulation showed a near-linear relationship between ES and p(B), which was nearly independent of the value of the MID. Agreement of the simulation with the empirical data were excellent. Although the curves differed for crossover and parallel group designs, the general form was similar. Introducing moderate skew into the distributions had minimal impact on the relationship.

CONCLUSIONS

The proportion of patients who will benefit from treatment can be directly estimated from the ES, and is nearly independent of the choice of MID. Effect size and anchor based approaches provide equivalent information in this situation.

摘要

背景

临床试验中生活质量变化的解释方法分为两个阵营:一类依赖于变化的分布和效应量(ES),另一类使用一些外部锚定指标,如患者对变化的判断,然后用于计算最小重要差异(MID)、治疗受益比例p(B)和治疗所需人数(NNT)。

目的

研究效应量与p(B)之间的关系,以及最小重要差异对这种关系的影响。

方法

基于正态分布进行模拟,计算不同效应量和最小重要差异值在平行组设计和交叉设计中受益患者的比例。评估模拟结果与四项哮喘和呼吸系统疾病研究的实证数据的一致性。还研究了变化分数分布的偏态对效应量与p(B)关系的影响。

结果

模拟显示效应量与p(B)之间存在近似线性关系,且几乎与最小重要差异值无关。模拟结果与实证数据的一致性非常好。虽然交叉设计和平行组设计的曲线不同,但总体形式相似。在分布中引入适度偏态对这种关系的影响最小。

结论

可直接从效应量估计治疗受益患者的比例,且几乎与最小重要差异的选择无关。在这种情况下,基于效应量和基于锚定指标的方法提供等效信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验