Gonzalez R, Griffin D
Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA.
Psychol Methods. 2001 Sep;6(3):258-69. doi: 10.1037/1082-989x.6.3.258.
A problem with standard errors estimated by many structural equation modeling programs is described. In such programs, a parameter's standard error is sensitive to how the model is identified (i.e., how scale is set). Alternative but equivalent ways to identify a model may yield different standard errors, and hence different Z tests for a parameter, even though the identifications produce the same overall model fit. This lack of invariance due to model identification creates the possibility that different analysts may reach different conclusions about a parameter's significance level even though they test equivalent models on the same data. The authors suggest that parameters be tested for statistical significance through the likelihood ratio test, which is invariant to the identification choice.
描述了许多结构方程建模程序估计标准误差时存在的一个问题。在这类程序中,参数的标准误差对模型的识别方式(即尺度如何设定)很敏感。识别模型的不同但等效的方式可能会产生不同的标准误差,从而对参数产生不同的Z检验,即使这些识别方式产生的整体模型拟合度相同。由于模型识别导致的这种缺乏不变性的情况,使得不同的分析人员即使在相同数据上测试等效模型,也可能对参数的显著性水平得出不同结论。作者建议通过似然比检验来检验参数的统计显著性,该检验对识别选择是不变的。