Suppr超能文献

结构方程模型中的检验参数:每一个“参数”都很重要。

Testing parameters in structural equation modeling: every "one" matters.

作者信息

Gonzalez R, Griffin D

机构信息

Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Psychol Methods. 2001 Sep;6(3):258-69. doi: 10.1037/1082-989x.6.3.258.

Abstract

A problem with standard errors estimated by many structural equation modeling programs is described. In such programs, a parameter's standard error is sensitive to how the model is identified (i.e., how scale is set). Alternative but equivalent ways to identify a model may yield different standard errors, and hence different Z tests for a parameter, even though the identifications produce the same overall model fit. This lack of invariance due to model identification creates the possibility that different analysts may reach different conclusions about a parameter's significance level even though they test equivalent models on the same data. The authors suggest that parameters be tested for statistical significance through the likelihood ratio test, which is invariant to the identification choice.

摘要

描述了许多结构方程建模程序估计标准误差时存在的一个问题。在这类程序中,参数的标准误差对模型的识别方式(即尺度如何设定)很敏感。识别模型的不同但等效的方式可能会产生不同的标准误差,从而对参数产生不同的Z检验,即使这些识别方式产生的整体模型拟合度相同。由于模型识别导致的这种缺乏不变性的情况,使得不同的分析人员即使在相同数据上测试等效模型,也可能对参数的显著性水平得出不同结论。作者建议通过似然比检验来检验参数的统计显著性,该检验对识别选择是不变的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验