Suppr超能文献

小样本量下惩罚最大似然估计与马尔可夫链蒙特卡罗技术在估计验证性因子分析模型中的比较

A Comparison of Penalized Maximum Likelihood Estimation and Markov Chain Monte Carlo Techniques for Estimating Confirmatory Factor Analysis Models With Small Sample Sizes.

作者信息

Lüdtke Oliver, Ulitzsch Esther, Robitzsch Alexander

机构信息

IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Germany.

Centre for International Student Assessment, Kiel, Germany.

出版信息

Front Psychol. 2021 Apr 29;12:615162. doi: 10.3389/fpsyg.2021.615162. eCollection 2021.

Abstract

With small to modest sample sizes and complex models, maximum likelihood (ML) estimation of confirmatory factor analysis (CFA) models can show serious estimation problems such as non-convergence or parameter estimates outside the admissible parameter space. In this article, we distinguish different Bayesian estimators that can be used to stabilize the parameter estimates of a CFA: the mode of the joint posterior distribution that is obtained from penalized maximum likelihood (PML) estimation, and the mean (EAP), median (Med), or mode (MAP) of the marginal posterior distribution that are calculated by using Markov Chain Monte Carlo (MCMC) methods. In two simulation studies, we evaluated the performance of the Bayesian estimators from a frequentist point of view. The results show that the EAP produced more accurate estimates of the latent correlation in many conditions and outperformed the other Bayesian estimators in terms of root mean squared error (RMSE). We also argue that it is often advantageous to choose a parameterization in which the main parameters of interest are bounded, and we suggest the four-parameter beta distribution as a prior distribution for loadings and correlations. Using simulated data, we show that selecting weakly informative four-parameter beta priors can further stabilize parameter estimates, even in cases when the priors were mildly misspecified. Finally, we derive recommendations and propose directions for further research.

摘要

对于小到中等规模的样本量和复杂模型,验证性因子分析(CFA)模型的最大似然(ML)估计可能会出现严重的估计问题,如不收敛或参数估计超出可接受的参数空间。在本文中,我们区分了可用于稳定CFA参数估计的不同贝叶斯估计器:通过惩罚最大似然(PML)估计获得的联合后验分布的众数,以及使用马尔可夫链蒙特卡罗(MCMC)方法计算的边际后验分布的均值(EAP)、中位数(Med)或众数(MAP)。在两项模拟研究中,我们从频率主义的角度评估了贝叶斯估计器的性能。结果表明,在许多情况下,EAP对潜在相关性的估计更准确,并且在均方根误差(RMSE)方面优于其他贝叶斯估计器。我们还认为,选择一种使主要感兴趣参数有界的参数化方式通常是有利的,并且我们建议将四参数贝塔分布作为载荷和相关性的先验分布。使用模拟数据,我们表明,即使在先验分布略有错误指定的情况下,选择弱信息性的四参数贝塔先验也可以进一步稳定参数估计。最后,我们得出建议并提出进一步研究的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8709/8118082/be0eb123c84c/fpsyg-12-615162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验