Thurston G D, Ito K
Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA.
J Expo Anal Environ Epidemiol. 2001 Jul-Aug;11(4):286-94. doi: 10.1038/sj.jea.7500169.
Many, but not all, observational epidemiological studies of ozone (O(3)) air pollution have yielded significant associations between variations in daily ambient concentrations of this pollutant and a wide range of adverse health outcomes. We evaluate some past epidemiological studies that have assessed the short-term association of O(3) with mortality, and investigate one possible reason for variations in their O(3) effect estimate, i.e., differences in their approaches to the modeling of weather influences on mortality. For all of the total mortality-air pollution time-series studies considered, the combined analysis yielded a relative risk, RR=1.036 per 100-ppb increase in daily 1-h maximum O(3) (95% CI: 1.023-1.050). However, the subset of studies that specified the nonlinear nature of the temperature-mortality association yielded a combined estimate of RR=1.056 per 100 ppb (95% CI: 1.032-1.081). This indicates that past time-series studies using linear temperature-mortality specifications have underpredicted the premature mortality effects of O(3) air pollution. For Detroit, MI, an illustrative analysis of daily total mortality during 1985-1990 also indicated that the model weather specification choice can influence the O(3) health effects estimate. Results were intercompared for alternative weather specifications. Nonlinear specifications of temperature and relative humidity (RH) yielded lower intercorrelations with the O(3) coefficient, and larger O(3) RR estimates, than a base model employing a simple linear spline of hot and cold temperature. We conclude that, unlike for particulate matter (PM) mass, the mortality effect estimates derived by time-series analyses for O(3) can be sensitive to the way that weather is addressed in the model. The same may well also be true for other pollutants with largely temperature-dependent formation mechanisms, such as secondary aerosols. Generally, we find that the O(3)-mortality effect estimate increases in size and statistical significance when the nonlinearity and the humidity interaction of the temperature-health effect association are incorporated into the model weather specification. We recommend that a minimization of the intercorrelations of model coefficients be considered (along with other critical factors such as goodness of fit, autocorrelation, and overdispersion) when specifying such a model, especially when individual coefficients are to be interpreted for risk estimation.
许多(但并非所有)关于臭氧(O₃)空气污染的观察性流行病学研究表明,该污染物的每日环境浓度变化与一系列广泛的不良健康后果之间存在显著关联。我们评估了过去一些评估O₃与死亡率短期关联的流行病学研究,并探究了其O₃效应估计值存在差异的一个可能原因,即它们在模拟天气对死亡率影响的方法上存在差异。对于所有考虑的总死亡率 - 空气污染时间序列研究,综合分析得出,每日1小时最大O₃每增加100 ppb,相对风险RR = 1.036(95%置信区间:1.023 - 1.050)。然而,指定温度 - 死亡率关联的非线性性质的研究子集得出的综合估计值为每100 ppb RR = 1.056(95%置信区间:1.032 - 1.081)。这表明过去使用线性温度 - 死亡率规范的时间序列研究低估了O₃空气污染对过早死亡率的影响。对于密歇根州底特律市,对1985 - 1990年期间每日总死亡率的示例分析也表明,模型天气规范的选择会影响O₃健康效应估计值。对替代天气规范的结果进行了相互比较。与采用冷热温度简单线性样条的基础模型相比,温度和相对湿度(RH)的非线性规范与O₃系数的相互相关性更低,O₃ RR估计值更大。我们得出结论,与颗粒物(PM)质量不同,通过时间序列分析得出的O₃死亡率效应估计值可能对模型中处理天气的方式敏感。对于其他具有很大程度上依赖温度形成机制的污染物,如二次气溶胶,情况可能也是如此。一般来说,我们发现当将温度 - 健康效应关联的非线性和湿度相互作用纳入模型天气规范时,O₃ - 死亡率效应估计值的大小和统计显著性会增加。我们建议在指定此类模型时,尤其是要对个体系数进行风险估计时,应考虑使模型系数的相互相关性最小化(以及其他关键因素,如拟合优度、自相关性和过度离散)。