Suppr超能文献

拓扑直phi4晶格中的扭结动力学

Kink dynamics in a topological straight phi4 lattice.

作者信息

Adib A B, Almeida C A

机构信息

Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):037701. doi: 10.1103/PhysRevE.64.037701. Epub 2001 Aug 27.

Abstract

Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting lattice preserves the topological (Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no Peierls-Nabarro barrier even for large spatial discretizations (h approximately 1.0). It was then suggested that these "topological discrete systems" are a natural choice for the numerical study of continuum kink dynamics. Giving particular emphasis to the straight phi(4) theory, we numerically investigate kink-antikink scattering and breather formation in these topological lattices. Our results indicate that, even though these systems are quite accurate for studying free kinks in coarse lattices, for legitimate dynamical kink problems the accuracy is rather restricted to fine lattices (h approximately 0.1). We suggest that this fact is related to the breaking of the Bogomol'nyi bound during the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol'nyi argument. We conclude, therefore, that these lattices are not suitable for the study of more general kink dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.

摘要

最近有人提出了一种针对非线性克莱因 - 戈登场论的离散化方法,在这种方法中,所得的晶格保留了扭结能量的拓扑(博戈莫尔尼)下限,因此,即使对于大的空间离散化(h约为1.0)也不存在派尔斯 - 纳巴罗势垒。随后有人提出,这些“拓扑离散系统”是连续统扭结动力学数值研究的自然选择。特别强调直phi(4)理论,我们对这些拓扑晶格中的扭结 - 反扭结散射和呼吸子形成进行了数值研究。我们的结果表明,尽管这些系统对于研究粗晶格中的自由扭结相当准确,但对于合理的动态扭结问题,其精度相当局限于细晶格(h约为0.1)。我们认为这一事实与扭结 - 反扭结相互作用期间博戈莫尔尼界限的破坏有关,在这种相互作用中,场分布失去了博戈莫尔尼论证所要求的静态特性。因此,我们得出结论,这些晶格不适用于研究更一般的扭结动力学,因为标准离散化更简单,并且对于此类分辨率具有实际上相同的精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验