Zhou Yujie, Chen Bryan Gin-Ge, Upadhyaya Nitin, Vitelli Vincenzo
Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands.
Phys Rev E. 2017 Feb;95(2-1):022202. doi: 10.1103/PhysRevE.95.022202. Epub 2017 Feb 1.
We study the dynamical response of a diatomic periodic chain of rotors coupled by springs, whose unit cell breaks spatial inversion symmetry. In the continuum description, we derive a nonlinear field theory which admits topological kinks and antikinks as nonlinear excitations but where a topological boundary term breaks the symmetry between the two and energetically favors the kink configuration. Using a cobweb plot, we develop a fixed-point analysis for the kink motion and demonstrate that kinks propagate without the Peierls-Nabarro potential energy barrier typically associated with lattice models. Using continuum elasticity theory, we trace the absence of the Peierls-Nabarro barrier for the kink motion to the topological boundary term which ensures that only the kink configuration, and not the antikink, costs zero potential energy. Further, we study the eigenmodes around the kink and antikink configurations using a tangent stiffness matrix approach appropriate for prestressed structures to explicitly show how the usual energy degeneracy between the two no longer holds. We show how the kink-antikink asymmetry also manifests in the way these nonlinear excitations interact with impurities introduced in the chain as disorder in the spring stiffness. Finally, we discuss the effect of impurities in the (bond) spring length and build prototypes based on simple linkages that verify our predictions.
我们研究了由弹簧耦合的转子双原子周期链的动力学响应,其单胞破坏了空间反演对称性。在连续介质描述中,我们推导了一种非线性场论,该理论允许拓扑扭结和反扭结作为非线性激发,但其中一个拓扑边界项打破了两者之间的对称性,并在能量上有利于扭结构型。使用蛛网图,我们对扭结运动进行了定点分析,并证明扭结传播时没有通常与晶格模型相关的佩尔斯 - 纳巴罗势能垒。利用连续介质弹性理论,我们将扭结运动中佩尔斯 - 纳巴罗势垒的缺失追溯到拓扑边界项,该边界项确保只有扭结构型,而不是反扭结,具有零势能。此外,我们使用适用于预应力结构的切线刚度矩阵方法研究了扭结和反扭结构型周围的本征模,以明确展示两者之间通常的能量简并性不再成立的方式。我们展示了扭结 - 反扭结不对称性如何也体现在这些非线性激发与作为弹簧刚度无序引入链中的杂质相互作用的方式中。最后,我们讨论了(键)弹簧长度中杂质的影响,并基于简单连杆构建了原型来验证我们的预测。