McCarthy D L, Capitani G, Feng L, Gruetter M G, Kirsch J F
Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, 229 Stanley Hall, University of California, Berkeley, 94720-3206, USA.
Biochemistry. 2001 Oct 16;40(41):12276-84. doi: 10.1021/bi011050z.
Glutamate 47 is conserved in 1-aminocyclopropane-1-carboxylate (ACC) synthases and is positioned near the sulfonium pole of (S,S)-S-adenosyl-L-methionine (SAM) in the modeled pyridoxal phosphate quinonoid complex with SAM. E47Q and E47D constructs of ACC synthase were made to investigate a putative ionic interaction between Glu47 and SAM. The k(cat)/K(m) values for the conversion of (S,S)-SAM to ACC and methylthioadenosine (MTA) are depressed 630- and 25-fold for the E47Q and E47D enzymes, respectively. The decreases in the specificity constants are due to reductions in k(cat) for both mutant enzymes, and a 5-fold increase in K(m) for the E47Q enzyme. Importantly, much smaller effects were observed for the kinetic parameters of reactions with the alternate substrates L-vinylglycine (L-VG) (deamination to form alpha-ketobutyrate and ammonia) and L-alanine (transamination to form pyruvate), which have uncharged side chains. L-VG is both a substrate and a mechanism-based inactivator of the enzyme [Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444], but the partition ratio, k(cat)/k(inact), is unaffected by the Glu47 mutations. ACC synthase primarily catalyzes the beta,gamma-elimination of MTA from the (R,S) diastereomer of SAM to produce L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112], but catalyzes the formation of ACC to a lesser extent via alpha,gamma-elimination of MTA. The partition ratios for (alpha,gamma/beta,gamma)-elimination on (R,S)-SAM are 0.4, < or =0.014, and < or =0.08 for the wild-type, E47Q, and E47D enzymes, respectively. The results of these experiments strongly support a role for Glu47 as an anchor for the sulfonium pole of (S,S)-SAM, and consequently a role as an active site determinant of reaction specificity.
谷氨酸47在1-氨基环丙烷-1-羧酸(ACC)合酶中保守,在与S-腺苷-L-甲硫氨酸(SAM)形成的磷酸吡哆醛醌型复合物模型中,它位于(S,S)-SAM的锍极附近。构建了ACC合酶的E47Q和E47D突变体,以研究Glu47与SAM之间可能存在的离子相互作用。对于E47Q和E47D酶,(S,S)-SAM转化为ACC和甲硫基腺苷(MTA)的k(cat)/K(m)值分别降低了630倍和25倍。特异性常数的降低是由于两种突变酶的k(cat)均降低,以及E47Q酶的K(m)增加了5倍。重要的是,对于与具有不带电侧链的替代底物L-乙烯基甘氨酸(L-VG)(脱氨形成α-酮丁酸和氨)和L-丙氨酸(转氨形成丙酮酸)反应的动力学参数,观察到的影响要小得多。L-VG既是该酶的底物,也是基于机制的失活剂[Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444],但分配比k(cat)/k(inact)不受Glu47突变的影响。ACC合酶主要催化从SAM的(R,S)非对映体中β,γ-消除MTA以产生L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112],但通过α,γ-消除MTA催化形成ACC的程度较小。野生型、E47Q和E47D酶在(R,S)-SAM上的(α,γ/β,γ)-消除分配比分别为0.4、≤0.014和≤0.08。这些实验结果有力地支持了Glu47作为(S,S)-SAM锍极的锚定物的作用,因此也支持了其作为反应特异性活性位点决定因素的作用。