Suppr超能文献

伊枯草菌素A操纵子的克隆、测序及特性分析

Cloning, sequencing, and characterization of the iturin A operon.

作者信息

Tsuge K, Akiyama T, Shoda M

机构信息

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

出版信息

J Bacteriol. 2001 Nov;183(21):6265-73. doi: 10.1128/JB.183.21.6265-6273.2001.

Abstract

Bacillus subtilis RB14 is a producer of the antifungal lipopeptide iturin A. Using a transposon, we identified and cloned the iturin A synthetase operon of RB14, and the sequence of this operon was also determined. The iturin A operon spans a region that is more than 38 kb long and is composed of four open reading frames, ituD, ituA, ituB, and ituC. The ituD gene encodes a putative malonyl coenzyme A transacylase, whose disruption results in a specific deficiency in iturin A production. The second gene, ituA, encodes a 449-kDa protein that has three functional modules homologous to fatty acid synthetase, amino acid transferase, and peptide synthetase. The third gene, ituB, and the fourth gene, ituC, encode 609- and 297-kDa peptide synthetases that harbor four and two amino acid modules, respectively. Mycosubtilin, which is produced by B. subtilis ATCC 6633, has almost the same structure as iturin A, but the amino acids at positions 6 and 7 in the mycosubtilin sequence are D-Ser-->L-Asn, while in iturin A these amino acids are inverted (i.e., D-Asn-->L-Ser). Comparison of the amino acid sequences encoded by the iturin A operon and the mycosubtilin operon revealed that ituD, ituA, and ituB have high levels of homology to the counterpart genes fenF (79%), mycA (79%), and mycB (79%), respectively. Although the overall level of homology of the amino acid sequences encoded by ituC and mycC, the counterpart of ituC, is relatively low (64%), which indicates that there is a difference in the amino acid sequences of the two lipopeptides, the levels of homology between the putative serine adenylation domains and between the asparagine adenylation domains in the two synthetases are high (79 and 80%, respectively), implying that there is an intragenic domain change in the synthetases. The fact that the flanking sequence of the iturin A synthetase coding region was highly homologous to the flanking sequence that of xynD of B. subtilis 168 and the fact that the promoter of the iturin A operon which we identified was also conserved in an upstream sequence of xynD imply that horizontal transfer of this operon occurred. When the promoter was replaced by the repU promoter of the plasmid pUB110 replication protein, production of iturin A increased threefold.

摘要

枯草芽孢杆菌RB14是抗真菌脂肽伊枯草菌素A的产生菌。我们利用转座子鉴定并克隆了RB14的伊枯草菌素A合成酶操纵子,并测定了该操纵子的序列。伊枯草菌素A操纵子跨越一个长度超过38 kb的区域,由四个开放阅读框ituD、ituA、ituB和ituC组成。ituD基因编码一种假定的丙二酰辅酶A转酰基酶,其缺失导致伊枯草菌素A产生的特异性缺陷。第二个基因ituA编码一种449 kDa的蛋白质,该蛋白质具有与脂肪酸合成酶、氨基酸转移酶和肽合成酶同源的三个功能模块。第三个基因ituB和第四个基因ituC分别编码含有四个和两个氨基酸模块的609 kDa和297 kDa的肽合成酶。枯草芽孢杆菌ATCC 6633产生的真菌枯草菌素与伊枯草菌素A结构几乎相同,但真菌枯草菌素序列中第6和7位的氨基酸是D-Ser→L-Asn,而在伊枯草菌素A中这些氨基酸是相反的(即D-Asn→L-Ser)。伊枯草菌素A操纵子和真菌枯草菌素操纵子编码的氨基酸序列比较表明,ituD、ituA和ituB分别与对应基因fenF(79%)、mycA(79%)和mycB(79%)具有高度同源性。尽管ituC及其对应基因mycC编码的氨基酸序列的总体同源性相对较低(64%),这表明两种脂肽的氨基酸序列存在差异,但两种合成酶中假定的丝氨酸腺苷化结构域之间以及天冬酰胺腺苷化结构域之间的同源性水平较高(分别为79%和80%),这意味着合成酶中存在基因内结构域变化。伊枯草菌素A合成酶编码区的侧翼序列与枯草芽孢杆菌168的xynD的侧翼序列高度同源,以及我们鉴定的伊枯草菌素A操纵子的启动子在xynD的上游序列中也保守这一事实,意味着该操纵子发生了水平转移。当启动子被质粒pUB110复制蛋白的repU启动子取代时,伊枯草菌素A的产量增加了三倍。

相似文献

1
Cloning, sequencing, and characterization of the iturin A operon.
J Bacteriol. 2001 Nov;183(21):6265-73. doi: 10.1128/JB.183.21.6265-6273.2001.
3
Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D.
FEMS Microbiol Lett. 2004 May 1;234(1):43-9. doi: 10.1016/j.femsle.2004.03.011.
4
Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer.
Antimicrob Agents Chemother. 2005 Nov;49(11):4641-8. doi: 10.1128/AAC.49.11.4641-4648.2005.
6
Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24.
Curr Microbiol. 2010 Feb;60(2):99-106. doi: 10.1007/s00284-009-9508-6. Epub 2009 Sep 24.
7
Characterization of iturin synthetase in the wild-type Bacillus subtilis strain producing iturin and in an iturin deficient mutant.
FEMS Microbiol Lett. 1996 Feb 15;136(2):117-22. doi: 10.1111/j.1574-6968.1996.tb08036.x.
8
A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization.
Biochim Biophys Acta. 1998 Aug 20;1399(2-3):141-53. doi: 10.1016/s0167-4781(98)00096-7.

引用本文的文献

1
Review on Current Research on Biosynthesis of Biosurfactants and the Regulation Influenced by Metal Ions.
J Microbiol Biotechnol. 2025 Aug 18;35:e2503031. doi: 10.4014/jmb.2503.03031.
2
Characterization of the antifungal activity of the bacterial isolate Bacillus velezensis TCG15.
Arch Microbiol. 2025 May 30;207(7):163. doi: 10.1007/s00203-025-04357-5.
3
Dynamic regulation of iturin production via reconstructing the quorum-sensing system ComQXPA in Bacillus subtilis.
World J Microbiol Biotechnol. 2025 May 12;41(5):173. doi: 10.1007/s11274-025-04390-y.
4
Fatty acyl-AMP ligases in bacterial natural product biosynthesis.
Nat Prod Rep. 2025 Apr 16;42(4):739-753. doi: 10.1039/d4np00073k.
7
Modular metabolic engineering of Bacillus amyloliquefaciens for high-level production of green biosurfactant iturin A.
Appl Microbiol Biotechnol. 2024 Apr 27;108(1):311. doi: 10.1007/s00253-024-13083-9.
8
Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward.
World J Microbiol Biotechnol. 2024 Mar 15;40(4):135. doi: 10.1007/s11274-024-03908-0.
9
Bacillus subtilis engineered for topical delivery of an antifungal agent.
PLoS One. 2023 Nov 30;18(11):e0293664. doi: 10.1371/journal.pone.0293664. eCollection 2023.
10
Iturin: A Promising Cyclic Lipopeptide with Diverse Applications.
Biomolecules. 2023 Oct 12;13(10):1515. doi: 10.3390/biom13101515.

本文引用的文献

1
Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14.
Appl Environ Microbiol. 1996 Nov;62(11):4081-5. doi: 10.1128/aem.62.11.4081-4085.1996.
2
Bacterial control of plant diseases.
J Biosci Bioeng. 2000;89(6):515-21. doi: 10.1016/s1389-1723(00)80049-3.
3
Multifunctional Peptide Synthetases.
Chem Rev. 1997 Nov 10;97(7):2675-2706. doi: 10.1021/cr9600262.
4
Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis.
Chem Rev. 1997 Nov 10;97(7):2651-2674. doi: 10.1021/cr960029e.
6
The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production.
Antimicrob Agents Chemother. 1999 Sep;43(9):2183-92. doi: 10.1128/AAC.43.9.2183.
7
Design and application of multimodular peptide synthetases.
Curr Opin Biotechnol. 1999 Aug;10(4):341-8. doi: 10.1016/S0958-1669(99)80062-7.
8
Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis.
J Bacteriol. 1999 Aug;181(16):5060-7. doi: 10.1128/JB.181.16.5060-5067.1999.
9
Recent trends in the biochemistry of surfactin.
Appl Microbiol Biotechnol. 1999 May;51(5):553-63. doi: 10.1007/s002530051432.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验