Bustos-Jaimes I, Calcagno M L
Laboratorio de Fisicoquímica y Diseño de Proteínas, Ciudad Universitaria, Mexico City D.F., 04510, Mexico.
Arch Biochem Biophys. 2001 Oct 15;394(2):156-60. doi: 10.1006/abbi.2001.2523.
Glucosamine-6P-deaminase (EC 3.5.99.6, formerly glucosamine-6-phosphate isomerase, EC 5.3.1.10) from Escherichia coli is an attractive experimental model for the study of allosteric transitions because it is both kinetically and structurally well-known, and follows rapid equilibrium random kinetics, so that the kinetic K(m) values are true thermodynamic equilibrium constants. The enzyme is a typical allosteric K-system activated by N-acetylglucosamine 6-P and displays an allosteric behavior that can be well described by the Monod-Wyman-Changeux model. This thermodynamic study based on the temperature dependence of allosteric parameters derived from this model shows that substrate binding and allosteric transition are both entropy-driven processes in E. coli GlcN6P deaminase. The analysis of this result in the light of the crystallographic structure of the enzyme implicates the active-site lid as the structural motif that could contribute significantly to this entropic component of the allosteric transition because of the remarkable change in its crystallographic B factors.
来自大肠杆菌的氨基葡萄糖-6-磷酸脱氨酶(EC 3.5.99.6,以前称为氨基葡萄糖-6-磷酸异构酶,EC 5.3.1.10)是研究变构转变的一个有吸引力的实验模型,因为它在动力学和结构方面都广为人知,并且遵循快速平衡随机动力学,因此动力学K(m)值是真正的热力学平衡常数。该酶是一种典型的由N-乙酰氨基葡萄糖6-磷酸激活的变构K系统,表现出一种能用莫诺德-怀曼-尚热模型很好描述的变构行为。这项基于该模型导出的变构参数对温度依赖性的热力学研究表明,在大肠杆菌氨基葡萄糖-6-磷酸脱氨酶中,底物结合和变构转变都是熵驱动过程。根据该酶的晶体结构对这一结果进行分析,表明活性位点盖子是一种结构基序,由于其晶体学B因子的显著变化,它可能对变构转变的这一熵成分有重大贡献。