Torres J, Kukol A, Goodman J M, Arkin I T
Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
Biopolymers. 2001 Nov;59(6):396-401. doi: 10.1002/1097-0282(200111)59:6<396::AID-BIP1044>3.0.CO;2-Y.
Detailed site-specific information can be exceptionally useful in structural studies of macromolecules in general and proteins in particular. Such information is usually obtained from spectroscopic studies using a label/probe that can reflect on particular properties of the protein. A suitable probe must not modify the native properties of the protein, and should yield interpretable structural information, as is the case with isotopic labels used by Fourier transform infrared (FTIR) spectroscopy. In particular, 1-(13)C=(18)O labels have been shown to relay site-specific secondary structure and orientational information, although limited to small peptides. The reason for this limitation is the high natural abundance of (13)C and the lack of baseline resolution between the main amide I band and the isotope-edited peak. Herein, we dramatically extend the utility of isotope edited FTIR spectroscopy to proteins of virtually any size through the use of a new 1-(13)C=(18)O label. The double-isotope label virtually eliminates any contribution from natural abundance (13)C. More importantly, the isotope-edited peak is further red-shifted (in accordance with ab initio Hartree-Fock calculations) and is now completely baseline resolved from the main amide I band. Taken together, this new label enables determination of site specific secondary structure and orientation in proteins of virtually any size. Even in small peptides 1-(13)C=(18)O is far preferable as a label in comparison to 1-(13)C=(18)O since it enables analysis without the need for any deconvolution or peak fitting procedures. Finally, the results obtained herein represent the first stage in the application of site-directed dichroism to the structural elucidation of polytopic membrane proteins.
详细的位点特异性信息在大分子尤其是蛋白质的结构研究中格外有用。此类信息通常通过使用能够反映蛋白质特定性质的标记/探针的光谱研究获得。合适的探针不能改变蛋白质的天然性质,并且应该产生可解释的结构信息,傅里叶变换红外(FTIR)光谱使用的同位素标记就是如此。特别是,1-(13)C=(18)O标记已被证明能够传递位点特异性二级结构和取向信息,尽管仅限于小肽。这种限制的原因是(13)C的天然丰度高以及酰胺I主带与同位素编辑峰之间缺乏基线分辨率。在此,我们通过使用一种新的1-(13)C=(18)O标记,极大地扩展了同位素编辑FTIR光谱对几乎任何大小蛋白质的实用性。双同位素标记几乎消除了天然丰度(13)C的任何贡献。更重要的是,同位素编辑峰进一步红移(符合从头算哈特里 - 福克计算),现在与酰胺I主带完全基线分离。综上所述,这种新标记能够确定几乎任何大小蛋白质的位点特异性二级结构和取向。即使在小肽中,与1-(13)C=(18)O相比,1-(13)C=(18)O作为标记也更可取,因为它无需任何去卷积或峰拟合程序就能进行分析。最后,本文获得的结果代表了将定点二色性应用于多结构域膜蛋白结构解析的第一阶段。