Suppr超能文献

磁共振成像(MRI)先验计算与并行回火算法:脑磁图(MEG)/脑电图(EEG)逆问题的概率求解方法

MRI prior computation and parallel tempering algorithm: a probabilistic resolution of the MEG/EEG inverse problem.

作者信息

Bertrand C, Hamada Y, Kado H

机构信息

Kanazawa Institute of Technology, Applied Electronics Laboratory, Tokyo, Japan.

出版信息

Brain Topogr. 2001 Fall;14(1):57-68. doi: 10.1023/a:1012567806745.

Abstract

Since the MEG inverse problem is ill-posed and admits many possible solutions, it is not possible to give it a single "true" answer. Therefore, we propose here to use a specific probabilistic algorithm to map the full probability distribution of the MEG sources with Markov Chain Monte Carlo methods. Using a Bayesian approach, the probability of the MEG solutions is expressed as the product of the likelihood by the prior probability. To compute the prior and constrain the MEG inverse problem resolution, MRI data are also acquired and automatically processed to determine the brain position and volume. We then use Parallel Tempering algorithm to estimate the full posterior probability and determine the likely solutions of the inverse problem. We illustrate the method with results obtained from the analysis of somatosensory data. This illustrates both the MRI processing for the prior computation, and how the knowledge of the full posterior probability distribution can be used to estimate the position of the sources, as well as their likely extension.

摘要

由于脑磁图逆问题是不适定的,并且存在许多可能的解,因此不可能给出一个单一的“真实”答案。因此,我们在此提议使用一种特定的概率算法,通过马尔可夫链蒙特卡罗方法来映射脑磁图源的全概率分布。采用贝叶斯方法,脑磁图解的概率表示为似然性与先验概率的乘积。为了计算先验并约束脑磁图逆问题的求解,还需采集并自动处理磁共振成像(MRI)数据,以确定脑的位置和体积。然后我们使用并行回火算法来估计全后验概率,并确定逆问题的可能解。我们用从体感数据分析中获得的结果来说明该方法。这既展示了用于先验计算的MRI处理过程,也展示了如何利用全后验概率分布的知识来估计源的位置及其可能的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验