Suppr超能文献

一种基于定量结构-性质关系(QSPRs)的模糊ARTMAP,用于预测有机化合物的水溶性。

A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds.

作者信息

Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F

机构信息

Department of Chemical Engineering, University of California-Los Angeles, 90095-1592, USA.

出版信息

J Chem Inf Comput Sci. 2001 Sep-Oct;41(5):1177-207. doi: 10.1021/ci010323u.

Abstract

Quantitative structure-property relationships (QSPRs) for estimating aqueous solubility of organic compounds at 25 degrees C were developed based on a fuzzy ARTMAP and a back-propagation neural networks using a heterogeneous set of 515 organic compounds. A set of molecular descriptors, developed from PM3 semiempirical MO-theory and topological descriptors (first-, second-, third-, and fourth-order molecular connectivity indices), were used as input parameters to the neural networks. Quantum chemical input descriptors included average polarizability, dipole moment, resonance energy, exchange energy, electron-nuclear attraction energy, and nuclear-nuclear (core-core) repulsion energy. The fuzzy ARTMAP/QSPR correlated aqueous solubility (S, mol/L) for a range of -11.62 to 4.31 logS with average absolute errors of 0.02 and 0.14 logS units for the overall and validation data sets, respectively. The optimal 11-13-1 back-propagation/QSPR model was less accurate, for the same solubility range, and exhibited larger average absolute errors of 0.29 and 0.28 logS units for the overall and validation sets, respectively. The fuzzy ARTMAP-based QSPR approach was shown to be superior to other back-propagation and multiple linear regression/QSPR models for aqueous solubility of organic compounds.

摘要

基于模糊ARTMAP和反向传播神经网络,利用515种有机化合物的异构集,建立了用于估算25℃下有机化合物水溶性的定量结构-性质关系(QSPRs)。从PM3半经验分子轨道理论和拓扑描述符(一阶、二阶、三阶和四阶分子连接性指数)开发的一组分子描述符被用作神经网络的输入参数。量子化学输入描述符包括平均极化率、偶极矩、共振能、交换能、电子-核吸引能和核-核(核心-核心)排斥能。模糊ARTMAP/QSPR在-11.62至4.31 logS范围内关联水溶性(S,mol/L),总体数据集和验证数据集的平均绝对误差分别为0.02和0.14 logS单位。对于相同的溶解度范围,最优的11-13-1反向传播/QSPR模型准确性较低,总体集和验证集的平均绝对误差分别为0.29和0.28 logS单位。基于模糊ARTMAP的QSPR方法被证明在有机化合物水溶性方面优于其他反向传播和多元线性回归/QSPR模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验