Suppr超能文献

基于单描述符的外推定量构效关系预测多氯代萘的理化性质:探索 logS(W)、logK(OA) 和 logK(OW) 与电子相关的关系。

Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of logS(W), logK(OA), and logK(OW) with electron-correlation.

机构信息

Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigrah 160014, India.

Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigrah 160014, India.

出版信息

J Hazard Mater. 2015 Oct 15;296:68-81. doi: 10.1016/j.jhazmat.2015.04.028. Epub 2015 Apr 13.

Abstract

Quantitative structure-property relationships (QSPRs), based only on a single-parameter, are proposed for the prediction of physico-chemical properties, namely, aqueous solubility (logSW), octanol-water partition coefficient (logKOW) and octanol-air partition coefficient (logKOA) of polychloronaphthalenes (PCNs) including all the 75 chloronaphthalene congeners. The QSPR models are developed using molecular descriptors computed through quantum mechanical methods including ab-initio as well as advanced semi-empirical methods. The predictivity of the developed models is tested through state-of-the-art external validation procedures employing an external prediction set of compounds. To analyse the role of instantaneous interactions between electrons (the electron-correlation), the models are also compared with those developed using only the electron-correlation contribution of the quantum chemical descriptor. The electron-correlation contribution towards the chemical hardness and the LUMO energy are observed to be the best predictors for octanol-water partition coefficient, whereas for the octanol-air partition coefficient, the total electronic energy and electron-correlation energy are found to be reliable descriptors, in fact, even better than the polarisability. For aqueous solubility of PCNs, the absolute electronegativity is observed to be the best predictor. This work suggests that the electron-correlation contribution of a quantum-chemical descriptor can be used as a reliable indicator for physico-chemical properties, particularly the partition coefficients.

摘要

基于单一参数的定量构效关系(QSPR)被提出,用于预测物理化学性质,包括多氯萘(PCN)的水溶解度(logSW)、辛醇-水分配系数(logKOW)和辛醇-空气分配系数(logKOA),这些 PCN 包括所有 75 种氯萘同系物。通过量子力学方法计算的分子描述符(包括从头算和高级半经验方法)开发了 QSPR 模型。通过使用化合物外部预测集的最先进的外部验证程序来测试开发模型的预测能力。为了分析电子之间瞬时相互作用(电子相关)的作用,还将模型与仅使用量子化学描述符的电子相关贡献开发的模型进行了比较。观察到电子相关对化学硬度和 LUMO 能量的贡献是辛醇-水分配系数的最佳预测因子,而对于辛醇-空气分配系数,总电子能量和电子相关能量被发现是可靠的描述符,实际上甚至比极化率更好。对于 PCN 的水溶解度,观察到绝对电负性是最佳预测因子。这项工作表明,量子化学描述符的电子相关贡献可以用作物理化学性质的可靠指标,特别是分配系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验