Yaffe Denise, Cohen Yoram, Espinosa Gabriela, Arenas Alex, Giralt Francesc
Department of Chemical Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, USA.
J Chem Inf Comput Sci. 2002 Mar-Apr;42(2):162-83. doi: 10.1021/ci0103267.
Quantitative structure-property relationships (QSPRs) for estimating the logarithm octanol/water partition coefficients, logK(ow), at 25 degrees C were developed based on fuzzy ARTMAP and back-propagation neural networks using a heterogeneous set of 442 organic compounds. The set of molecular descriptors were derived from molecular connectivity indices and quantum chemical descriptors calculated from PM3 semiempirical MO-theory. Quantum chemical input descriptors include average polarizability, dipole moments, exchange energy, total electrostatic interaction energy, total two-center energy, and ionization potential. The fuzzy ARTMAP/QSPR performed, for a logK(ow) range of -1.6 to 7.9, with average absolute errors of 0.03 and 0.14 logK(ow) for the overall data and test sets, respectively. The optimal 12-11-1 back-propagation/QSPR model, for the same range of logK(ow), exhibited larger average absolute errors of 0.23 and 0.27 logK(ow) for the test and validation data sets, respectively, over the same range of logK(ow) values. The present results with the fuzzy ARTMAP-based QSPR are encouraging and suggest that high performance logK(ow) QSPR that encompasses a wider range of chemical groups could be developed, following the present approach, by training with a larger heterogeneous data set.
基于模糊ARTMAP和反向传播神经网络,利用442种有机化合物的异构集,建立了用于估算25℃下正辛醇/水分配系数对数logK(ow)的定量结构-性质关系(QSPR)。分子描述符集源自分子连接性指数和根据PM3半经验分子轨道理论计算的量子化学描述符。量子化学输入描述符包括平均极化率、偶极矩、交换能、总静电相互作用能、总双中心能和电离势。对于logK(ow)范围为-1.6至7.9的情况,模糊ARTMAP/QSPR对总体数据集和测试集的平均绝对误差分别为0.03和0.14 logK(ow)。对于相同的logK(ow)范围,最优的12-11-1反向传播/QSPR模型在测试数据集和验证数据集上的平均绝对误差分别为0.23和0.27 logK(ow)。基于模糊ARTMAP的QSPR的当前结果令人鼓舞,表明通过使用更大的异构数据集进行训练,遵循当前方法,可以开发出涵盖更广泛化学基团的高性能logK(ow) QSPR。