Suppr超能文献

Activation of melatonin receptor increases a delayed rectifier K+ current in rat cerebellar granule cells.

作者信息

Huan C, Zhou M, Wu M, Zhang Z, Mei Y

机构信息

Laboratory of Li-ren and Brain Research Center, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 200433, Shanghai, PR China.

出版信息

Brain Res. 2001 Nov 2;917(2):182-90. doi: 10.1016/s0006-8993(01)02915-8.

Abstract

The present study was initiated to investigate the effect of melatonin on K+ current in rat cerebellar granule cells for 2 to 6 days in culture (DIC). The whole-cell configuration of the conventional patch-clamp technique was used to record the outward K+ current. Two types of outward K+ current, a transient outward K+ current and a delayed rectifier K+ current, were separated by different voltage protocols and a specific blocker of K+ channel. Application of melatonin (10 microM) by a brief pressure ejection induced a significant and reversible increase of the delayed rectifier K+ current amplitude in 78% of the cells tested. The activated effect of melatonin on the K+ current was independent of the time in culture, and the percentage of activation remained at a relatively stable level from 2 DIC to 6 DIC; but that was dependent on the concentration of melatonin applied. The activation of the K+ current induced by melatonin presented no desensitization after repeated application of melatonin. The effect of melatonin on the K+ current can be mimicked by 2-iodomelatonin, a melatonin receptor agonist. With the addition of guanosine-5'-O-(3-thiophosphate) in the pipette solution, melatonin caused a stronger activation effect on the K+ channels, and an irreversible increase of the current amplitude in some granule cells tested. Pretreatment of cells with PTX suppressed the action of melatonin on the K+ current in most granule cells studied. In addition, the activation curves and inactivation curves tested with the steady-state activation and inactivation protocols were unchanged by melatonin, suggesting that melatonin did not modulate the channel's activation and inactivation properties. Our results demonstrated the presence of a functional melatonin receptor in cultured cerebellar granule cells from neonatal cerebellum. Activating the receptor can modulate the outward K+ currents by coupling to a PTX-sensitive G protein.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验