Koch-Nolte F, Reche P, Haag F, Bazan F
Institute for Immunology, University-Hospital, D20246 Hamburg, Germany.
J Biotechnol. 2001 Dec 28;92(2):81-7. doi: 10.1016/s0168-1656(01)00356-x.
ADP-ribosyltransferases (ADPRTs) form an interesting class of enzymes with well-established roles as potent bacterial toxins and metabolic regulators. ADPRTs catalyze the transfer of the ADP-ribose moiety from NAD(+) onto specific substrates including proteins. ADP-ribosylation usually inactivates the function of the target. ADPRTs have become adapted to function in extra- and intracellular settings. Regulation of ADPRT activity can be mediated by ligand binding to associated regulatory domains, proteolytic cleavage, disulphide bond reduction, and association with other proteins. Crystallisation has revealed a conserved core set of elements that define an unusual minimal scaffold of the catalytic domain with remarkably plastic sequence requirements--only a single glutamic acid residue critical to catalytic activity is invariant. These inherent properties of ADPRTs suggest that the ADPRT catalytic fold is an attractive, malleable subject for protein design.
ADP核糖基转移酶(ADPRTs)构成了一类有趣的酶,它们作为强效细菌毒素和代谢调节剂具有既定作用。ADPRTs催化ADP核糖部分从NAD(+)转移到包括蛋白质在内的特定底物上。ADP核糖基化通常会使靶标的功能失活。ADPRTs已适应在细胞外和细胞内环境中发挥作用。ADPRT活性的调节可通过配体与相关调节域的结合、蛋白水解切割、二硫键还原以及与其他蛋白质的结合来介导。晶体学研究揭示了一组保守的核心元件,这些元件定义了催化结构域不同寻常的最小支架,其序列要求具有显著可塑性——只有一个对催化活性至关重要的谷氨酸残基是不变的。ADPRTs的这些固有特性表明,ADPRT催化结构域是蛋白质设计中一个有吸引力、可塑的研究对象。