Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
Sci Rep. 2017 Feb 2;7:41746. doi: 10.1038/srep41746.
Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.
人类致病性正链单链 RNA((+)ssRNA)病毒,包括基孔肯雅病毒,会造成严重的健康问题,因为对于许多病毒来说,既没有有效的疫苗,也没有治疗策略。为了干扰病毒的繁殖,病毒的酶活性被认为是潜在的靶点。在这里,我们研究了病毒宏结构域的功能,这些结构域是许多(+)ssRNA 病毒非结构蛋白的保守折叠。宏结构域与 ADP-核糖基的功能和代谢密切相关。ADP-核糖基化是一种翻译后修饰,可控制包括 DNA 修复、转录和应激反应在内的各种细胞过程。我们发现,病毒宏结构域对单 ADP-核糖基转移酶 ARTD7、ARTD8 和 ARTD10(分别为 PARP15、PARP14 和 PARP10)的单 ADP-核糖基化底物具有广泛的水解酶活性,可在体外和细胞内逆转这种翻译后修饰。相比之下,病毒宏结构域对由 ARTD1(又名 PARP1)合成的多 ADP-核糖链只有较弱的活性。与聚 ADP-核糖基糖水解酶不同,后者可将聚 ADP-核糖链水解成单个 ADP-核糖单元,但不能裂解氨基酸侧链-ADP-核糖键,不同的病毒宏结构域以不同的效率释放聚 ADP-核糖链。突变和结构分析确定了基孔肯雅病毒宏结构域水解酶活性的关键氨基酸。此外,先天免疫机制诱导了 ARTD8 和 ARTD10 的表达,这表明单 ADP-核糖基化的控制是宿主-病原体冲突的一部分。