Suppr超能文献

CC-1065和多卡霉素的含7-甲氧基-1,2,9,9a-四氢环丙并[c]苯并[e]吲哚-4-酮(MCBI)烷基化亚基的取代CBI类似物的合成与性质:电子效应对功能反应性的影响程度

Synthesis and Properties of Substituted CBI Analogs of CC-1065 and the Duocarmycins Incorporating the 7-Methoxy-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (MCBI) Alkylation Subunit: Magnitude of Electronic Effects on the Functional Reactivity.

作者信息

Boger Dale L., McKie Jeffrey A., Cai Hui, Cacciari Barbara, Baraldi P. G.

机构信息

Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037.

出版信息

J Org Chem. 1996 Mar 8;61(5):1710-1729. doi: 10.1021/jo952033g.

Abstract

The synthesis of 7-methoxy-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (MCBI), a substituted CBI derivative bearing a C7 methoxy group para to the C4 carbonyl, is described in efforts that establish the magnitude of potential electronic effects on the chemical and functional reactivity of the agents. The core structure of the MCBI alkylation subunit was prepared by a modified Stobbe condensation/Friedel-Crafts acylation for generation of the appropriately functionalized naphthalene precursors (15 and 20) followed by 5-exo-trig aryl radical-alkene cyclization (24 --> 25, 32 --> 33) for completion of the synthesis of the 1,2-dihydro-3H-benz[e]indole skeleton and final Ar-3' alkylation of 28 for introduction of the activated cyclopropane. Two approaches to the implementation of the key 5-exo-trig free radical cyclization are detailed with the former proceeding with closure of 24 to provide 25 in which the required product functionalization was introduced prior to cyclization and the latter with Tempo trap of the cyclization product of the unfunctionalized alkene substrate 32 to provide 33. The latter concise approach provided the MCBI subunit and its immediate precursor in 12-13 steps in superb overall conversions (27-30%). Resolution of an immediate MCBI precursor and its incorporation into both enantiomers of 39-46, analogs of CC-1065 and the duocarmycins, are detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-MCBI (29) revealed that introduction of the C7 methoxy group accelerates the rate of solvolysis by only 1.2-1.06x. This remarkably modest effect is inconsistent with C4 carbonyl protonation as the slow and rate-determining step of solvolysis or acid-catalyzed nucleophilic addition but is consistent with a mechanism in which protonation is rapid and reversible followed by slow and rate-determining nucleophilic addition to the cyclopropane requiring both the presence and assistance of a nucleophile (S(N)2 mechanism). No doubt this contributes to the DNA alkylation selectivity of this class of agents and suggests that the positioning of an accessible nucleophile (adenine N3) and not C4 carbonyl protonation is the rate-determining step controlling the sequence selectivity of the DNA alkylation reaction. This small electronic effect on the solvolysis rate had no impact on the solvolysis regioselectivity, and stereoelectronically-controlled nucleophilic addition to the least substituted carbon of the activated cyclopropane was observed exclusively. For the natural enantiomers, this unusually small electronic effect on functional reactivity had little or no perceptible effect on their DNA alkylation selectivity, efficiency, and relative rates or on their biological properties. Perceptible effects of the C7 methoxy substituent on the unnatural enantiomers were observed and they proved to be 4-40x more effective than the corresponding CBI-based unnatural enantiomers and comparable in cytotoxic potency with the MCBI natural enantiomers. This effect is most consistently rationalized not by a C7 methoxy substituent effect on functional reactivity but rather through introduction of additional stabilizing noncovalent interactions which increase the unnatural enantiomer DNA alkylation efficiency and further stabilize its inherently reversible DNA alkylation reaction.

摘要

本文描述了7-甲氧基-1,2,9,9a-四氢环丙基[c]苯并[e]吲哚-4-酮(MCBI)的合成,它是一种在C4羰基对位带有C7甲氧基的取代CBI衍生物,该研究旨在确定潜在电子效应在这类试剂的化学和功能反应性方面的影响程度。MCBI烷基化亚基的核心结构是通过改进的Stobbe缩合/傅克酰化反应制备得到适当官能化的萘前体(15和20),然后通过5-外向-三芳基自由基-烯烃环化反应(24→25,32→33)完成1,2-二氢-3H-苯并[e]吲哚骨架的合成,并通过对28进行最终的Ar-3'烷基化反应引入活化的环丙烷。详细介绍了两种实现关键的5-外向-三自由基环化反应的方法,前者通过闭合24得到25,其中所需的产物官能化在环化之前引入,后者通过Tempo捕获未官能化烯烃底物32的环化产物得到33。后一种简洁的方法以12 - 13步、出色的总转化率(27 - 30%)得到了MCBI亚基及其直接前体。详细介绍了一种直接的MCBI前体的拆分及其并入CC-1065和双卡霉素类似物39 - 46的两种对映体的过程。对N-BOC-MCBI(29)的溶剂解反应性和区域选择性研究表明,引入C7甲氧基仅使溶剂解速率加快1.2 - 1.06倍。这种显著适度的影响与C4羰基质子化作为溶剂解或酸催化亲核加成的缓慢且速率决定步骤不一致,但与一种机制相符,即质子化快速且可逆,随后是缓慢且速率决定的对环丙烷的亲核加成,这需要亲核试剂的存在和协助(SN2机制)。毫无疑问,这有助于这类试剂的DNA烷基化选择性,并表明可及亲核试剂(腺嘌呤N3)的定位而非C4羰基质子化是控制DNA烷基化反应序列选择性的速率决定步骤。这种对溶剂解速率的小电子效应并未影响溶剂解区域选择性,并且仅观察到立体电子控制的亲核加成到活化环丙烷取代最少的碳上。对于天然对映体,这种对功能反应性异常小的电子效应几乎或没有对其DNA烷基化选择性、效率、相对速率或生物学性质产生明显影响。观察到C7甲氧基取代基对非天然对映体有明显影响,并且它们被证明比相应的基于CBI的非天然对映体有效4 - 40倍,并且在细胞毒性效力方面与MCBI天然对映体相当。这种效应最合理的解释不是C7甲氧基取代基对功能反应性的影响,而是通过引入额外的稳定非共价相互作用,这增加了非天然对映体的DNA烷基化效率并进一步稳定了其固有的可逆DNA烷基化反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验