McGrady John E., Stranger Robert, Lovell Timothy
Department of Chemistry, The Faculties, The Australian National University, Canberra, ACT 0200, Australia.
Inorg Chem. 1998 Jul 27;37(15):3802-3808. doi: 10.1021/ic970553j.
Potential energy curves for the broken-symmetry states of the edge-shared bimetallic systems, M(2)Cl(10)(4-) (M = Cr, Mo, W), are analyzed using approximate density functional theory. The potential energy curves are made up of distinct sections, depending on which subsets of metal-based electrons are localized or delocalized. Starting from the fully delocalized limit, the metal-based electrons localize in the order delta before pi before sigma as the metal-metal separation is progressively increased. As a result there are four distinct regions of the potential energy curve, corresponding to (a) sigma + pi + delta delocalized; (b) sigma + pi delocalized, delta localized; (c) sigma delocalized, pi + delta localized; and (d) sigma + pi + delta localized. Localization of the delta subset of electrons is particularly facile, because interactions with the bridging ligands destabilize the delta orbital relative to delta. As a result, at metal-metal separations greater than approximately 2.30 Å, delocalization of the delta electrons would result in formation of a M-M antibond rather than a bond. For Cr(2)Cl(10)(4-), the fully localized region of the curve lies much lower than the others, but for the molybdenum and tungsten congeners, all four regions lie within 1.0 eV of each other, giving rise to complex and relatively flat potential energy curves. The decahalides of the chromium triad therefore exhibit the well-established trend toward greater delocalization in complexes of the heavier transition metals. This trend is, however, found to be far less prominent than in the face-shared analogues, M(2)Cl(9)(3-), and the difference between the two structural types is traced to the inability of the edge-shared bridge to support the short metal-metal separations necessary for complete electron delocalization.
使用近似密度泛函理论分析了边缘共享双金属体系M₂Cl₁₀⁴⁻(M = Cr、Mo、W)的破缺对称态的势能曲线。势能曲线由不同的部分组成,这取决于基于金属的电子的哪些子集是局域化的或离域化的。从完全离域的极限开始,随着金属 - 金属间距逐渐增加,基于金属的电子按δ先于π先于σ的顺序局域化。结果,势能曲线有四个不同的区域,分别对应于:(a) σ + π + δ离域;(b) σ + π离域,δ局域;(c) σ离域,π + δ局域;以及(d) σ + π + δ局域。电子的δ子集的局域化特别容易,因为与桥连配体的相互作用使δ轨道相对于δ不稳定。因此,在金属 - 金属间距大于约2.30 Å时,δ电子的离域会导致形成M - M反键而不是键。对于Cr₂Cl₁₀⁴⁻,曲线的完全局域区域比其他区域低得多,但对于钼和钨的同系物,所有四个区域彼此相差在1.0 eV以内,从而产生复杂且相对平坦的势能曲线。因此,铬系元素的十卤化物在较重过渡金属的配合物中呈现出已确立的更大离域化趋势。然而,发现这种趋势远不如面共享类似物M₂Cl₉³⁻明显,并且这两种结构类型之间的差异可追溯到边缘共享桥无法支持完全电子离域所需的短金属 - 金属间距。