Suppr超能文献

[Ru(II)(hedta)](-) 配合物与一氧化氮(NO)、硝酰阳离子(NO⁺)、亚硝酸根离子(NO₂⁻)和硝负离子(NO⁻)的¹⁵N核磁共振及电化学研究

15N NMR and Electrochemical Studies of [Ru(II)(hedta)](-) Complexes of NO, NO(+), NO(2)(-), and NO(-).

作者信息

Chen Ya, Lin Fu-Tyan, Shepherd Rex E.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.

出版信息

Inorg Chem. 1999 Mar 8;38(5):973-983. doi: 10.1021/ic980868e.

Abstract

Ru(II)(hedta)L()(-) complexes (hedta(3)(-) = N-(hydroxyethyl)ethylenediaminetriacetate; L = NO(+), n = 0; L = NO, n = 1; L = NO(-), n = 2) have been prepared by the displacement of H(2)O/D(2)O via NO(g) or NO(2)(-). This is the first reported entire set of NO(+), NO, and NO(-) as ligands for the same metal center in a constant oxidation state and with a constant ligand environment (here Ru(II) and the amino carboxylate hedta(3)(-)). From the NO stretching frequencies of isolated salts, the net influence of back-donation by Ru(II) and its sigma-withdrawal was observed to be that the bond order for the NO(+) complex is virtually the same (ca. 2.46) as that for the NO complex (ca. 2.48). The back-donation to NO(-) is also small, as is that to NO, but orbital mixing of NO(-) and Ru(II) is sufficiently important to induce a singlet NO(-) complex. Values for the nu(NO) in cm(-)(1) for the (14)N- and (15)N-labeled complexes, respectively, are as follows: NO(+), 1846, 1827; NO, 1858, 1842; NO(-), 1383, 1370. Combined results of (15)N, (13)C, and (1)H NMR spectra of the complexes in D(2)O show that [Ru(II)(hedta)((15)NO(+))] is a single cis-equatorial isomer with its (15)NO(+) resonance at 249.6 ppm vs [(15)N]formamide. The two-electron-reduced Ru(II)(hedta)((15)NO(-))(-) complex exists as trans- and cis-equatorial isomers having (15)NO(-) resonances at 609.4 and 607.4 ppm. The (15)N resonances appear at 260.0 ppm for the (15)NO(+) ligand and at 348.8 ppm for the bound (15)NO(2)(-) ligand in the [Ru(II)(hedta)((15)NO(2)(-))((15)NO(+))(D(2)O)] complex. Differential pulse voltammetric waves for the Ru(II)(hedta)L()(-) series occur at -0.37 V for the Ru(II)(NO(-))/Ru(II)(NO) couple, at -0.10 V for the Ru(II)(NO)/Ru(II)(NO(+)) couple, and at +0.98 V for the Ru(II)(NO(+))/Ru(III)(NO(+)) couple. The coordinated nitrosyl ion/nitro equilibrium (L')Ru(II)(NO(+)) + 2OH(-) right harpoon over left harpoon (L')Ru(II)(NO(2)(-)) + H(2)O (K(NO)()2()-) was observed for L' = hedta(3)(-), as for previous examples with L' = violurate, polypyridyl ligands, and (CN(-))(5) and (NH(3))(5) ligand sets. K(NO)()2()- = 1.44 x 10(13) for L' = hedta(3)(-). log(K(NO)()2()-) is linearly related through the ion-pairing equilibrium constant expression to -z(1)z(2), the charge product of the reacting ions (here the (L')Ru(NO(+)) complex and OH(-)) from -4 through +3, excluding the (NH(3))(m)() ammine series with m = 4 and 5. The opposite behavior of the ammines is attributed to strong solvent H-bonding that changes for reactant and product in the nitrosyl/nitro equilibrium. The pK(a) of coordinated nitrous acid in Ru(II)(hedta)(HONO) is calculated to be -0.80, a 3.85 log unit enhancement over free HONO due to the Ru(II) charge. An MO explanation is presented to interrelate the {Fe(III)-(NO(-) triplet)} complexes, the {Ru(II)-(NO(-) singlet)} type observed for Ru(II)(hedta)((15)NO(-))(-), and the NO(+) complexes of other strong-field metals. When both d(z)()()2 and d(x)()()2(-)(y)()()2 metal orbitals reside below the NO pi pair, the electronic repulsions favor a bent NO(-) triplet ligand. If both metal orbitals reside above the NO pi pair, the orbital mixing and back-donation induce a coordinated NO(-) singlet ligand, and if the NO pi pair reside between the two sigma-based d orbitals, an NO(+) ligand and reduced metal center obtain.

摘要

已通过经由 NO(g) 或 NO₂⁻ 置换 H₂O/D₂O 制备了 Ru(II)(hedta)L⁻ 配合物(hedta³⁻ = N-(羟乙基)乙二胺三乙酸;L = NO⁺,n = 0;L = NO,n = 1;L = NO⁻,n = 2)。这是首次报道的同一金属中心在恒定氧化态且具有恒定配体环境(此处为 Ru(II) 和氨基羧酸盐 hedta³⁻)下,以 NO⁺、NO 和 NO⁻ 作为配体的完整系列。从分离盐的 NO 伸缩频率观察到,Ru(II) 的反馈作用及其 σ-吸电子的净影响是,NO⁺ 配合物的键级实际上与 NO 配合物的键级相同(约 2.46)(约 2.48)。对 NO⁻ 的反馈作用也较小,与对 NO 的反馈作用一样,但 NO⁻ 与 Ru(II) 的轨道混合足够重要,可诱导出单重态 NO⁻ 配合物。¹⁴N 和¹⁵N 标记配合物的 ν(NO) 值(单位为 cm⁻¹)分别如下:NO⁺,1846,1827;NO,1858,1842;NO⁻,1383,1370。配合物在 D₂O 中的¹⁵N、¹³C 和¹H NMR 光谱的综合结果表明,[Ru(II)(hedta)((¹⁵)NO⁺)] 是单一的顺式赤道异构体,其 (¹⁵)NO⁺ 共振相对于 [(¹⁵)N] 甲酰胺在 249.6 ppm 处。双电子还原的 [Ru(II)(hedta)((¹⁵)NO⁻)]²⁻ 配合物以反式和顺式赤道异构体形式存在,其 (¹⁵)NO⁻ 共振分别在 609.4 和 607.4 ppm 处。在 [Ru(II)(hedta)((¹⁵)NO₂⁻)((¹⁵)NO⁺)(D₂O)] 配合物中,(¹⁵)NO⁺ 配体的¹⁵N 共振出现在 260.0 ppm 处,结合的 (¹⁵)NO₂⁻ 配体的¹⁵N 共振出现在 348.8 ppm 处。Ru(II)(hedta)L⁻ 系列的差分脉冲伏安波在 Ru(II)(NO⁻)/Ru(II)(NO) 电对处出现在 -0.37 V,在 Ru(II)(NO)/Ru(II)(NO⁺) 电对处出现在 -0.10 V,在 Ru(II)(NO⁺)/Ru(III)(NO⁺) 电对处出现在 +0.98 V。对于 L' = hedta³⁻,观察到配位的亚硝酰离子/硝基平衡 (L')Ru(II)(NO⁺) + 2OH⁻ ⇌ (L')Ru(II)(NO₂⁻) + H₂O(K(NO₂⁻)),与之前 L' = 紫脲酸根、多吡啶配体以及 (CN⁻)₅ 和 (NH₃)₅ 配体组的例子相同。对于 L' = hedta³⁻,K(NO₂⁻) = 1.44 × 10¹³。log(K(NO₂⁻)) 通过离子对平衡常数表达式与 -z₁z₂ 线性相关,-z₁z₂ 是反应离子(此处为 (L')Ru(NO⁺) 配合物和 OH⁻)的电荷乘积,范围从 -4 到 +3,但不包括 m = 4 和 5 的 (NH₃)ₘ 氨系列。氨的相反行为归因于强溶剂氢键,其在亚硝酰/硝基平衡中反应物和产物之间发生变化。计算得出 [Ru(II)(hedta)(HONO)]⁻ 中配位亚硝酸的 pKa 为 -0.80,由于 Ru(II) 电荷,比游离 HONO 增强了 3.85 个对数单位。提出了一种分子轨道解释,以关联 {Fe(III)-(NO⁻ 三重态)} 配合物、[Ru(II)(hedta)((¹⁵)NO⁻)]²⁻ 中观察到的 {Ru(II)-(NO⁻ 单重态)} 类型以及其他强场金属的 NO⁺ 配合物。当 d(z²) 和 d(x² - y²) 金属轨道都位于 NO π 对之下时,电子排斥有利于弯曲的 NO⁻ 三重态配体。如果两个金属轨道都位于 NO π 对之上,轨道混合和反馈作用会诱导出配位的 NO⁻ 单重态配体,如果 NO π 对位于两个基于 σ 的 d 轨道之间,则会得到 NO⁺ 配体和还原的金属中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验