Suppr超能文献

线粒体如何重新定义遗传密码。

How mitochondria redefine the code.

作者信息

Knight R D, Landweber L F, Yarus M

机构信息

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

J Mol Evol. 2001 Oct-Nov;53(4-5):299-313. doi: 10.1007/s002390010220.

Abstract

Annotated, complete DNA sequences are available for 213 mitochondrial genomes from 132 species. These provide an extensive sample of evolutionary adjustment of codon usage and meaning spanning the history of this organelle. Because most known coding changes are mitochondrial, such data bear on the general mechanism of codon reassignment. Coding changes have been attributed variously to loss of codons due to changes in directional mutation affecting the genome GC content (Osawa and Jukes 1988), to pressure to reduce the number of mitochondrial tRNAs to minimize the genome size (Anderson and Kurland 1991), and to the existence of transitional coding mechanisms in which translation is ambiguous (Schultz and Yarus 1994a). We find that a succession of such steps explains existing reassignments well. In particular, (1) Genomic variation in the prevalence of a codon's third-position nucleotide predicts relative mitochondrial codon usage well, though GC content does not. This is because A and T, and G and C, are uncorrelated in mitochondrial genomes. (2) Codons predicted to reach zero usage (disappear) do so more often than expected by chance, and codons that do disappear are disproportionately likely to be reassigned. However, codons predicted to disappear are not significantly more likely to be reassigned. Therefore, low codon frequencies can be related to codon reassignment, but appear to be neither necessary nor sufficient for reassignment. (3) Changes in the genetic code are not more likely to accompany smaller numbers of tRNA genes and are not more frequent in smaller genomes. Thus, mitochondrial codons are not reassigned during demonstrable selection for decreased genome size. Instead, the data suggest that both codon disappearance and codon reassignment depend on at least one other event. This mitochondrial event (leading to reassignment) occurs more frequently when a codon has disappeared, and produces only a small subset of possible reassignments. We suggest that coding ambiguity, the extension of a tRNA's decoding capacity beyond its original set of codons, is the second event. Ambiguity can act alone but often acts in concert with codon disappearance, which promotes codon reassignment.

摘要

现已获得132个物种的213个线粒体基因组的带注释完整DNA序列。这些序列为该细胞器整个历史上密码子使用和意义的进化调整提供了广泛样本。由于大多数已知的编码变化都发生在线粒体中,因此这些数据与密码子重新分配的一般机制相关。编码变化的原因有多种,包括由于影响基因组GC含量的定向突变变化导致密码子丢失(大泽和朱克斯,1988年)、为减少线粒体tRNA数量以最小化基因组大小的压力(安德森和库兰德,1991年),以及存在翻译模糊的过渡编码机制(舒尔茨和亚鲁斯,1994a)。我们发现一系列这样的步骤能够很好地解释现有的重新分配情况。具体而言,(1)密码子第三位核苷酸出现频率的基因组变异能很好地预测线粒体密码子的相对使用情况,而GC含量则不能。这是因为在线粒体基因组中,A与T以及G与C是不相关的。(2)预计使用频率降为零(消失)的密码子实际消失的频率比随机预期的更高,并且确实消失的密码子被重新分配的可能性不成比例地高。然而,预计消失的密码子被重新分配的可能性并没有显著更高。因此,低密码子频率可能与密码子重新分配有关,但似乎对于重新分配既非必要条件也非充分条件。(3)遗传密码的变化与较少数量的tRNA基因并无更紧密的关联,在较小的基因组中也并非更频繁出现。因此,在为减小基因组大小而进行的明显选择过程中,线粒体密码子不会被重新分配。相反,数据表明密码子消失和密码子重新分配都至少依赖于另一个事件。当一个密码子消失时,这个线粒体事件(导致重新分配)更频繁发生,并且只产生一小部分可能的重新分配情况。我们认为编码模糊性,即tRNA解码能力扩展到其原始密码子集合之外,是第二个事件。模糊性可以单独起作用,但通常与密码子消失协同作用,从而促进密码子重新分配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验