Pinckney J L, Paerl H W, Tester P, Richardson T L
Department of Oceanography, Texas A&M University, College Station 77843, USA.
Environ Health Perspect. 2001 Oct;109 Suppl 5(Suppl 5):699-706. doi: 10.1289/ehp.01109s5699.
Eutrophication is a process that can be defined as an increase in the rate of supply of organic matter (OM) to an ecosystem. We provide a general overview of the major features driving estuarine eutrophication and outline some of the consequences of that process. The main chemical constituent of OM is carbon (C), and therefore rates of eutrophication are expressed in units of C per area per unit time. OM occurs in both particulate and dissolved forms. Allochthonous OM originates outside the estuary, whereas autochthonous OM is generated within the system, mostly by primary producers or by benthic regeneration of OM. The supply rates of limiting nutrients regulate phytoplankton productivity that contributes to inputs of autochthonous OM. The trophic status of an estuary is often based on eutrophication rates and can be categorized as oligotrophic (<100 g C m(-2) y(-1), mesotrophic (100-300 g C m(-2) y(-1), eutrophic (300-500 g C m(-2) y(-1), or hypertrophic (>500 g C m(-2) y(-1). Ecosystem responses to eutrophication depend on both export rates (flushing, microbially mediated losses through respiration, and denitrification) and recycling/regeneration rates within the estuary. The mitigation of the effects of eutrophication involves the regulation of inorganic nutrient (primarily N and P) inputs into receiving waters. Appropriately scaled and parameterized nutrient and hydrologic controls are the only realistic options for controlling phytoplankton blooms, algal toxicity, and other symptoms of eutrophication in estuarine ecosystems.
富营养化是一个可定义为生态系统中有机物(OM)供应速率增加的过程。我们概述了驱动河口富营养化的主要特征,并概述了该过程的一些后果。OM的主要化学成分是碳(C),因此富营养化速率以单位时间单位面积的C为单位表示。OM以颗粒态和溶解态两种形式存在。外源OM起源于河口之外,而内源OM则在系统内产生,主要由初级生产者或通过OM的底栖再生产生。限制性营养物质的供应速率调节浮游植物的生产力,而浮游植物生产力有助于内源OM的输入。河口的营养状态通常基于富营养化速率,可分为贫营养(<100 g C m(-2) y(-1))、中营养(100 - 300 g C m(-2) y(-1))、富营养(300 - 500 g C m(-2) y(-1))或超富营养(>500 g C m(-2) y(-1))。生态系统对富营养化的响应取决于输出速率(冲洗、通过呼吸作用的微生物介导损失和反硝化作用)以及河口内的再循环/再生速率。减轻富营养化影响涉及调节进入受纳水体的无机营养物(主要是N和P)输入。适当规模和参数化的营养和水文控制是控制河口生态系统中浮游植物大量繁殖、藻类毒性和其他富营养化症状的唯一现实选择。