Suppr超能文献

用于真实场景中光源估计的颜色线搜索

Color line search for illuminant estimation in real-world scenes.

作者信息

Lehmann T M, Palm C

机构信息

Institute of Medical Informatics, Aachen University of Technology, Germany.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2001 Nov;18(11):2679-91. doi: 10.1364/josaa.18.002679.

Abstract

The estimation of illuminant color is mandatory for many applications in the field of color image quantification. However, it is an unresolved problem if no additional heuristics or restrictive assumptions apply. Assuming uniformly colored and roundly shaped objects, Lee has presented a theory and a method for computing the scene-illuminant chromaticity from specular highlights [H. C. Lee, J. Opt. Soc. Am. A 3, 1694 (1986)]. However, Lee's method, called image path search, is less robust to noise and is limited in the handling of microtextured surfaces. We introduce a novel approach to estimate the color of a single illuminant for noisy and microtextured images, which frequently occur in real-world scenes. Using dichromatic regions of different colored surfaces, our approach, named color line search, reverses Lee's strategy of image path search. Reliable color lines are determined directly in the domain of the color diagrams by three steps. First, regions of interest are automatically detected around specular highlights, and local color diagrams are computed. Second, color lines are determined according to the dichromatic reflection model by Hough transform of the color diagrams. Third, a consistency check is applied by a corresponding path search in the image domain. Our method is evaluated on 40 natural images of fruit and vegetables. In comparison with those of Lee's method, accuracy and stability are substantially improved. In addition, the color line search approach can easily be extended to scenes of objects with macrotextured surfaces.

摘要

在彩色图像量化领域,许多应用都需要估计光源颜色。然而,如果没有额外的启发式方法或限制性假设,这仍是一个未解决的问题。假设物体颜色均匀且形状为圆形,李提出了一种从镜面高光计算场景光源色度的理论和方法[H. C. 李,《美国光学学会志A》3, 1694 (1986)]。然而,李的方法称为图像路径搜索,对噪声的鲁棒性较差,并且在处理微纹理表面时存在局限性。我们引入了一种新颖的方法来估计有噪声和微纹理图像(这在现实场景中经常出现)中单个光源的颜色。利用不同颜色表面的双色区域,我们的方法称为颜色线搜索,它颠倒了李的图像路径搜索策略。可靠的颜色线通过三个步骤直接在颜色图域中确定。首先,在镜面高光周围自动检测感兴趣区域,并计算局部颜色图。其次,根据双色反射模型通过颜色图的霍夫变换确定颜色线。第三,通过在图像域中进行相应的路径搜索来应用一致性检查。我们的方法在40张水果和蔬菜的自然图像上进行了评估。与李的方法相比,准确性和稳定性有了显著提高。此外,颜色线搜索方法可以很容易地扩展到具有宏观纹理表面的物体场景中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验