Suppr超能文献

用于光源估计的深度双色引导学习

Deep Dichromatic Guided Learning for Illuminant Estimation.

作者信息

Woo Sung-Min, Kim Jong-Ok

出版信息

IEEE Trans Image Process. 2021;30:3623-3636. doi: 10.1109/TIP.2021.3062729.

Abstract

A new dichromatic illuminant estimation method using a deep neural network is proposed. Previous methods based on the dichromatic reflection model commonly suffer from inaccurate separation of specularity, thus being limited in their use in a real-world. Recent deep neural network-based methods have shown a significant improvement in the estimation of the illuminant color. However, why they succeed or fail is not explainable easily, because most of them estimate the illuminant color at the network output directly. To tackle these problems, the proposed architecture is designed to learn dichromatic planes and their confidences using a deep neural network with novel losses function. The illuminant color is estimated by a weighted least mean square of these planes. The proposed dichromatic guided learning not only achieves compelling results among state-of-the-art color constancy methods in standard real-world benchmark evaluations, but also provides a map to include color and regional contributions for illuminant estimation, which allow for an in-depth analysis of success and failure cases of illuminant estimation.

摘要

提出了一种使用深度神经网络的新型双色光源估计方法。以往基于双色反射模型的方法通常存在镜面反射分离不准确的问题,因此在实际应用中受到限制。最近基于深度神经网络的方法在光源颜色估计方面有了显著改进。然而,它们成功或失败的原因并不容易解释,因为大多数方法直接在网络输出端估计光源颜色。为了解决这些问题,所提出的架构旨在使用具有新颖损失函数的深度神经网络来学习双色平面及其置信度。通过这些平面的加权最小均方来估计光源颜色。所提出的双色引导学习不仅在标准真实世界基准评估中在现有最先进的颜色恒常性方法中取得了令人信服的结果,还提供了一个包含颜色和区域对光源估计贡献的映射图,这有助于深入分析光源估计的成功和失败案例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验