Vignal E, Blangy A, Martin M, Gauthier-Rouvière C, Fort P
Centre de Recherche en Biochimie Macromoléculaire, CNRS-UPR1086, 34293 Montpellier cedex 5, France.
Mol Cell Biol. 2001 Dec;21(23):8022-34. doi: 10.1128/MCB.21.23.8022-8034.2001.
RhoG is a member of the Rho family of GTPases that activates Rac1 and Cdc42 through a microtubule-dependent pathway. To gain understanding of RhoG downstream signaling, we performed a yeast two-hybrid screen from which we identified kinectin, a 156-kDa protein that binds in vitro to conventional kinesin and enhances microtubule-dependent kinesin ATPase activity. We show that RhoG(GTP) specifically interacts with the central domain of kinectin, which also contains a RhoA binding domain in its C terminus. Interaction was confirmed by coprecipitation of kinectin with active RhoG(G12V) in COS-7 cells. RhoG, kinectin, and kinesin colocalize in REF-52 and COS-7 cells, mainly in the endoplasmic reticulum but also in lysosomes. Kinectin distribution in REF-52 cells is modulated according to endogenous RhoG activity. In addition, by using injection of anti-kinectin antibodies that challenge RhoG-kinectin interaction or by blocking anti-kinesin antibodies, we show that RhoG morphogenic activity relies on kinectin interaction and kinesin activity. Finally, kinectin overexpression elicits Rac1- and Cdc42-dependent cytoskeletal effects and switches cells to a RhoA phenotype when RhoG activity is inhibited or microtubules are disrupted. The functional links among RhoG, kinectin, and kinesin are further supported by time-lapse videomicroscopy of COS-7 cells, which showed that the microtubule-dependent lysosomal transport is facilitated by RhoG activation or kinectin overexpression and is severely stemmed upon RhoG inhibition. These data establish that kinectin is a key mediator of microtubule-dependent RhoG activity and suggest that kinectin also mediates RhoG- and RhoA-dependent antagonistic pathways.
RhoG是GTP酶Rho家族的成员,它通过微管依赖性途径激活Rac1和Cdc42。为了深入了解RhoG的下游信号传导,我们进行了酵母双杂交筛选,从中鉴定出驱动蛋白结合蛋白,这是一种156 kDa的蛋白质,可在体外与传统驱动蛋白结合并增强微管依赖性驱动蛋白ATP酶活性。我们发现RhoG(GTP)与驱动蛋白结合蛋白的中央结构域特异性相互作用,该结构域在其C末端也包含一个RhoA结合结构域。在COS-7细胞中,活性RhoG(G12V)与驱动蛋白结合蛋白的共沉淀证实了这种相互作用。RhoG、驱动蛋白结合蛋白和驱动蛋白在REF-52和COS-7细胞中共定位,主要在内质网中,但也在溶酶体中。REF-52细胞中驱动蛋白结合蛋白的分布根据内源性RhoG活性进行调节。此外,通过注射挑战RhoG-驱动蛋白结合蛋白相互作用的抗驱动蛋白结合蛋白抗体或通过阻断抗驱动蛋白抗体,我们表明RhoG的形态发生活性依赖于驱动蛋白结合蛋白相互作用和驱动蛋白活性。最后,当RhoG活性受到抑制或微管被破坏时,驱动蛋白结合蛋白的过表达会引发Rac1和Cdc42依赖性的细胞骨架效应,并使细胞转变为RhoA表型。COS-7细胞的延时视频显微镜进一步支持了RhoG、驱动蛋白结合蛋白和驱动蛋白之间的功能联系,结果显示RhoG激活或驱动蛋白结合蛋白过表达促进了微管依赖性溶酶体运输,而RhoG抑制则严重阻碍了该运输。这些数据表明驱动蛋白结合蛋白是微管依赖性RhoG活性的关键介质,并提示驱动蛋白结合蛋白也介导RhoG和RhoA依赖性的拮抗途径。