Suppr超能文献

驱动连接蛋白是RhoG微管依赖性细胞活动的关键效应器。

Kinectin is a key effector of RhoG microtubule-dependent cellular activity.

作者信息

Vignal E, Blangy A, Martin M, Gauthier-Rouvière C, Fort P

机构信息

Centre de Recherche en Biochimie Macromoléculaire, CNRS-UPR1086, 34293 Montpellier cedex 5, France.

出版信息

Mol Cell Biol. 2001 Dec;21(23):8022-34. doi: 10.1128/MCB.21.23.8022-8034.2001.

Abstract

RhoG is a member of the Rho family of GTPases that activates Rac1 and Cdc42 through a microtubule-dependent pathway. To gain understanding of RhoG downstream signaling, we performed a yeast two-hybrid screen from which we identified kinectin, a 156-kDa protein that binds in vitro to conventional kinesin and enhances microtubule-dependent kinesin ATPase activity. We show that RhoG(GTP) specifically interacts with the central domain of kinectin, which also contains a RhoA binding domain in its C terminus. Interaction was confirmed by coprecipitation of kinectin with active RhoG(G12V) in COS-7 cells. RhoG, kinectin, and kinesin colocalize in REF-52 and COS-7 cells, mainly in the endoplasmic reticulum but also in lysosomes. Kinectin distribution in REF-52 cells is modulated according to endogenous RhoG activity. In addition, by using injection of anti-kinectin antibodies that challenge RhoG-kinectin interaction or by blocking anti-kinesin antibodies, we show that RhoG morphogenic activity relies on kinectin interaction and kinesin activity. Finally, kinectin overexpression elicits Rac1- and Cdc42-dependent cytoskeletal effects and switches cells to a RhoA phenotype when RhoG activity is inhibited or microtubules are disrupted. The functional links among RhoG, kinectin, and kinesin are further supported by time-lapse videomicroscopy of COS-7 cells, which showed that the microtubule-dependent lysosomal transport is facilitated by RhoG activation or kinectin overexpression and is severely stemmed upon RhoG inhibition. These data establish that kinectin is a key mediator of microtubule-dependent RhoG activity and suggest that kinectin also mediates RhoG- and RhoA-dependent antagonistic pathways.

摘要

RhoG是GTP酶Rho家族的成员,它通过微管依赖性途径激活Rac1和Cdc42。为了深入了解RhoG的下游信号传导,我们进行了酵母双杂交筛选,从中鉴定出驱动蛋白结合蛋白,这是一种156 kDa的蛋白质,可在体外与传统驱动蛋白结合并增强微管依赖性驱动蛋白ATP酶活性。我们发现RhoG(GTP)与驱动蛋白结合蛋白的中央结构域特异性相互作用,该结构域在其C末端也包含一个RhoA结合结构域。在COS-7细胞中,活性RhoG(G12V)与驱动蛋白结合蛋白的共沉淀证实了这种相互作用。RhoG、驱动蛋白结合蛋白和驱动蛋白在REF-52和COS-7细胞中共定位,主要在内质网中,但也在溶酶体中。REF-52细胞中驱动蛋白结合蛋白的分布根据内源性RhoG活性进行调节。此外,通过注射挑战RhoG-驱动蛋白结合蛋白相互作用的抗驱动蛋白结合蛋白抗体或通过阻断抗驱动蛋白抗体,我们表明RhoG的形态发生活性依赖于驱动蛋白结合蛋白相互作用和驱动蛋白活性。最后,当RhoG活性受到抑制或微管被破坏时,驱动蛋白结合蛋白的过表达会引发Rac1和Cdc42依赖性的细胞骨架效应,并使细胞转变为RhoA表型。COS-7细胞的延时视频显微镜进一步支持了RhoG、驱动蛋白结合蛋白和驱动蛋白之间的功能联系,结果显示RhoG激活或驱动蛋白结合蛋白过表达促进了微管依赖性溶酶体运输,而RhoG抑制则严重阻碍了该运输。这些数据表明驱动蛋白结合蛋白是微管依赖性RhoG活性的关键介质,并提示驱动蛋白结合蛋白也介导RhoG和RhoA依赖性的拮抗途径。

相似文献

1
Kinectin is a key effector of RhoG microtubule-dependent cellular activity.
Mol Cell Biol. 2001 Dec;21(23):8022-34. doi: 10.1128/MCB.21.23.8022-8034.2001.
2
RhoG signals in parallel with Rac1 and Cdc42.
J Biol Chem. 2002 Dec 6;277(49):47810-7. doi: 10.1074/jbc.M203816200. Epub 2002 Oct 9.
3
Kinectin-kinesin binding domains and their effects on organelle motility.
J Biol Chem. 2000 Oct 20;275(42):32854-60. doi: 10.1074/jbc.M005650200.
4
TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG.
J Cell Sci. 2000 Feb;113 ( Pt 4):729-39. doi: 10.1242/jcs.113.4.729.
5
Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.
J Neurochem. 2016 Oct;139(1):26-39. doi: 10.1111/jnc.13735. Epub 2016 Aug 4.
6
RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs.
Mol Biol Cell. 1998 Jun;9(6):1379-94. doi: 10.1091/mbc.9.6.1379.
7
RhoG regulates gene expression and the actin cytoskeleton in lymphocytes.
Oncogene. 2003 Jan 23;22(3):330-42. doi: 10.1038/sj.onc.1206116.
8
RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo.
Nature. 2003 Jul 24;424(6947):461-4. doi: 10.1038/nature01817.
9
Interaction of the Rho family small G proteins with kinectin, an anchoring protein of kinesin motor.
Biochem Biophys Res Commun. 1996 Aug 5;225(1):69-74. doi: 10.1006/bbrc.1996.1132.

引用本文的文献

1
The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology.
Mol Genet Genomics. 2022 Jan;297(1):1-18. doi: 10.1007/s00438-021-01843-5. Epub 2022 Jan 9.
2
Histone deacetylase 8 interacts with the GTPase SmRho1 in Schistosoma mansoni.
PLoS Negl Trop Dis. 2021 Nov 29;15(11):e0009503. doi: 10.1371/journal.pntd.0009503. eCollection 2021 Nov.
3
The RHO Family GTPases: Mechanisms of Regulation and Signaling.
Cells. 2021 Jul 20;10(7):1831. doi: 10.3390/cells10071831.
4
Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases.
Front Cell Dev Biol. 2021 Jul 1;9:688352. doi: 10.3389/fcell.2021.688352. eCollection 2021.
8
Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases.
Cells. 2019 Nov 21;8(12):1478. doi: 10.3390/cells8121478.
9
A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.
Neurogenetics. 2016 Apr;17(2):91-105. doi: 10.1007/s10048-015-0470-0. Epub 2016 Jan 18.
10
An ELMO2-RhoG-ILK network modulates microtubule dynamics.
Mol Biol Cell. 2015 Jul 15;26(14):2712-25. doi: 10.1091/mbc.E14-10-1444. Epub 2015 May 20.

本文引用的文献

2
Small GTPase RhoG is a key regulator for neurite outgrowth in PC12 cells.
Mol Cell Biol. 2000 Oct;20(19):7378-87. doi: 10.1128/MCB.20.19.7378-7387.2000.
3
Characterization of TCL, a new GTPase of the rho family related to TC10 andCcdc42.
J Biol Chem. 2000 Nov 17;275(46):36457-64. doi: 10.1074/jbc.M003487200.
4
Kinectin-kinesin binding domains and their effects on organelle motility.
J Biol Chem. 2000 Oct 20;275(42):32854-60. doi: 10.1074/jbc.M005650200.
5
Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila.
Cell. 2000 Apr 28;101(3):283-94. doi: 10.1016/s0092-8674(00)80838-7.
7
The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo.
Neuron. 2000 Apr;26(1):93-106. doi: 10.1016/s0896-6273(00)81141-1.
8
TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG.
J Cell Sci. 2000 Feb;113 ( Pt 4):729-39. doi: 10.1242/jcs.113.4.729.
9
Rho GTPases control polarity, protrusion, and adhesion during cell movement.
J Cell Biol. 1999 Mar 22;144(6):1235-44. doi: 10.1083/jcb.144.6.1235.
10
Effectors for the Rho GTPases.
Curr Opin Cell Biol. 1999 Feb;11(1):95-102. doi: 10.1016/s0955-0674(99)80011-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验