Ducret Valérie, Richards Adam J, Videlier Mathieu, Scalvenzi Thibault, Moore Karen A, Paszkiewicz Konrad, Bonneaud Camille, Pollet Nicolas, Herrel Anthony
UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 Rue Buffon, 75005, Paris, France.
Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France.
BMC Genomics. 2021 Mar 23;22(1):204. doi: 10.1186/s12864-021-07517-1.
Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach.
We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion.
These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
动物运动能力的差异通常反映了对不同环境的适应。尽管有证据表明身体性能是可遗传的,但运动性能及其权衡的分子基础仍知之甚少。在本研究中,我们使用转录组学方法,确定了可能导致在非洲爪蟾中观察到的爆发性能和耐力之间权衡的基因、信号通路和调控过程。
我们从Illumina RNA测序中总共获得了约1.21亿对末端读数,并分析了从头组装得到的218,541个转录本。我们鉴定出109个在耐力型和爆发型个体之间有显著差异表达的转录本(FDR≤0.05且logFC≥2),通过BLAST搜索得到了103个蛋白质编码基因。我们发现耐力型和爆发型个体在参与肌动蛋白丝聚合和ATP酶活性、细胞运输、蛋白聚糖和分泌的细胞外蛋白、脂质代谢、线粒体活性以及信号级联调节因子的基因表达上存在主要差异。值得注意的是,我们揭示了关键基因的转录异构体,这些异构体在代谢、细胞凋亡、核输出以及作为转录共抑制因子方面发挥作用,在爆发型或耐力型个体中表达。最后,我们在爆发型个体中发现了两个上调的转录本,它们对应于肌球蛋白结合蛋白C快型(mybpc2)的表达。这表明存在mybpc2同源基因,并且可能受到选择的青睐以允许快速而有力的运动。
这些结果表明,除了使用可变剪接和细胞活动效应器外,钙信号通路、内质网应激反应和横纹肌收缩途径中的基因差异表达是运动性能权衡的基础。最终,我们的转录组分析为未来分析单核苷酸变异、同源性和可变剪接在运动性能权衡进化中的作用提供了新的视角。