Gauthier-Rouvière C, Vignal E, Mériane M, Roux P, Montcourier P, Fort P
IGMM, CNRS-UMR5535, Route de Mende, 34293 Montpellier Cedex 05 France.
Mol Biol Cell. 1998 Jun;9(6):1379-94. doi: 10.1091/mbc.9.6.1379.
RhoG is a member of the Rho family of GTPases that shares 72% and 62% sequence identity with Rac1 and Cdc42Hs, respectively. We have expressed mutant RhoG proteins fused to the green fluorescent protein and analyzed subsequent changes in cell surface morphology and modifications of cytoskeletal structures. In rat and mouse fibroblasts, green fluorescent protein chimera and endogenous RhoG proteins colocalize according to a tubular cytoplasmic pattern, with perinuclear accumulation and local concentration at the plasma membrane. Constitutively active RhoG proteins produce morphological and cytoskeletal changes similar to those elicited by a simultaneous activation of Rac1 and Cdc42Hs, i.e., the formation of ruffles, lamellipodia, filopodia, and partial loss of stress fibers. In addition, RhoG and Cdc42Hs promote the formation of microvilli at the cell apical membrane. RhoG-dependent events are not mediated through a direct interaction with Rac1 and Cdc42Hs targets such as PAK-1, POR1, or WASP proteins but require endogenous Rac1 and Cdc42Hs activities: coexpression of a dominant negative Rac1 impairs membrane ruffling and lamellipodia but not filopodia or microvilli formation. Conversely, coexpression of a dominant negative Cdc42Hs only blocks microvilli and filopodia, but not membrane ruffling and lamellipodia. Microtubule depolymerization upon nocodazole treatment leads to a loss of RhoG protein from the cell periphery associated with a reversal of the RhoG phenotype, whereas PDGF or bradykinin stimulation of nocodazole-treated cells could still promote Rac1- and Cdc42Hs-dependent cytoskeletal reorganization. Therefore, our data demonstrate that RhoG controls a pathway that requires the microtubule network and activates Rac1 and Cdc42Hs independently of their growth factor signaling pathways.
RhoG是GTP酶Rho家族的成员,与Rac1和Cdc42Hs的序列同一性分别为72%和62%。我们表达了与绿色荧光蛋白融合的突变型RhoG蛋白,并分析了随后细胞表面形态的变化和细胞骨架结构的修饰。在大鼠和小鼠成纤维细胞中,绿色荧光蛋白嵌合体和内源性RhoG蛋白根据管状细胞质模式共定位,在核周积累并在质膜处局部浓缩。组成型活性RhoG蛋白产生的形态和细胞骨架变化类似于同时激活Rac1和Cdc42Hs所引发的变化,即形成褶皱、片状伪足、丝状伪足以及应力纤维部分丧失。此外,RhoG和Cdc42Hs促进细胞顶端膜处微绒毛的形成。RhoG依赖性事件不是通过与Rac1和Cdc42Hs的靶标如PAK-1、POR1或WASP蛋白直接相互作用介导的,而是需要内源性Rac1和Cdc42Hs的活性:共表达显性负性Rac1会损害膜褶皱和片状伪足的形成,但不会影响丝状伪足或微绒毛的形成。相反,共表达显性负性Cdc42Hs仅会阻断微绒毛和丝状伪足的形成,但不会影响膜褶皱和片状伪足的形成。诺考达唑处理导致微管解聚,使RhoG蛋白从细胞周边丧失,同时RhoG表型逆转,而血小板衍生生长因子(PDGF)或缓激肽对经诺考达唑处理的细胞的刺激仍可促进Rac1和Cdc42Hs依赖性的细胞骨架重组。因此,我们的数据表明,RhoG控制着一条需要微管网络的途径,并独立于其生长因子信号通路激活Rac1和Cdc42Hs。