Ferreira Anderson A, Alcaraz Francisco C
Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):052102. doi: 10.1103/PhysRevE.65.052102. Epub 2002 May 6.
Anomalous behavior of correlation functions of tagged particles are studied in generalizations of the one-dimensional asymmetric exclusion problem. In these generalized models the range of the hard-core interactions are changed and the restriction of relative ordering of the particles is partially broken. The models probing these effects are those of biased diffusion of particles having size S=0,1,2, em leader, or an effective negative "size" S=-1,-2, em leader, in units of lattice space. Our numerical simulations show that irrespective of the range of the hard-core potential, as long some relative ordering of particles are kept, we find suitable sliding-tag correlation functions whose fluctuations growth with time anomalously slow (t1/3), when compared with the normal diffusive behavior (t1/2). These results indicate that the critical behavior of these stochastic models are in the Kardar-Parisi-Zhang (KPZ) universality class. Moreover a previous Bethe-ansatz calculation of the dynamical critical exponent z, for size S> or =0 particles is extended to the case S<0 and the KPZ result z=3/2 is predicted for all values of S in Z.
在一维非对称排斥问题的推广中,研究了标记粒子关联函数的反常行为。在这些广义模型中,硬核相互作用的范围发生了变化,粒子相对排序的限制被部分打破。探测这些效应的模型是粒子在晶格空间单位下具有大小(S = 0,1,2,\cdots)或有效负“大小”(S = -1,-2,\cdots)的有偏扩散模型。我们的数值模拟表明,无论硬核势的范围如何,只要保持粒子的某种相对排序,我们就会发现合适的滑动标记关联函数,与正常扩散行为((t^{1/2}))相比,其涨落随时间的增长异常缓慢((t^{1/3}))。这些结果表明,这些随机模型的临界行为属于 Kardar-Parisi-Zhang(KPZ)普适类。此外,先前对大小(S\geq0)粒子的动力学临界指数(z)的贝塞耳假设计算被扩展到(S < 0)的情况,并预测对于(Z)中所有(S)值,KPZ结果(z = 3/2)成立。