Kuraguchi M, Yang K, Wong E, Avdievich E, Fan K, Kolodner R D, Lipkin M, Brown A M, Kucherlapati R, Edelmann W
Strang Cancer Research Laboratory at The Rockefeller University, New York, New York 10021, USA.
Cancer Res. 2001 Nov 1;61(21):7934-42.
In mammalian cells, mismatch recognition has been attributed to two partially redundant heterodimeric protein complexes of MutS homologues, MSH2-MSH3 and MSH2-MSH6. We have conducted a comparative analysis of Msh3 and Msh6 deficiency in mouse intestinal tumorigenesis by generating Apc1638N mice deficient in Msh3, Msh6 or both. We have found that Apc1638N mice defective in Msh6 show reduced survival and a 6-7-fold increase in intestinal tumor multiplicity. In contrast, Msh3-deficient Apc1638N mice showed no difference in survival and intestinal tumor multiplicity as compared with Apc1638N mice. However, when Msh3 deficiency is combined with Msh6 deficiency (Msh3(-/-)Msh6(-/-)Apc1638N), the survival rate of the mice was further reduced compared to Msh6(-/-)Apc(1638N) mice because of a high multiplicity of intestinal tumors at a younger age. Almost 90% of the intestinal tumors from both Msh6(-/-)Apc1638N and Msh3(-/-)Msh6(-/-)Apc1638N mice contained truncation mutations in the wild-type Apc allele. Apc mutations in Msh6(-/-)Apc1638N mice consisted predominantly of base substitutions (93%) creating stop codons, consistent with a major role for Msh6 in the repair of base-base mismatches. However, in Msh3(-/-)Msh6(-/-)Apc1638N tumors, we observed a mixture of base substitutions (46%) and frameshifts (54%), indicating that in Msh6(-/-)Apc1638N mice frameshift mutations in the Apc gene were suppressed by Msh3. Interestingly, all except one of the Apc mutations detected in mismatch repair-deficient intestinal tumors were located upstream of the third 20-amino acid beta-catenin binding repeat and before all of the Ser-Ala-Met-Pro repeats, suggesting that there is selection for loss of multiple domains involved in beta-catenin regulation. Our analysis therefore has revealed distinct mutational spectra and clarified the roles of Msh3 and Msh6 in DNA repair and intestinal tumorigenesis.
在哺乳动物细胞中,错配识别归因于MutS同源物的两种部分冗余的异二聚体蛋白复合物,即MSH2-MSH3和MSH2-MSH6。我们通过构建缺失Msh3、Msh6或两者的Apc1638N小鼠,对Msh3和Msh6缺陷在小鼠肠道肿瘤发生中的作用进行了比较分析。我们发现,Msh6缺陷的Apc1638N小鼠存活率降低,肠道肿瘤数量增加6至7倍。相比之下,与Apc1638N小鼠相比,Msh3缺陷的Apc1638N小鼠在存活率和肠道肿瘤数量上没有差异。然而,当Msh3缺陷与Msh6缺陷同时存在时(Msh3(-/-)Msh6(-/-)Apc1638N),由于在较年轻时肠道肿瘤数量众多,小鼠的存活率相比Msh6(-/-)Apc(1638N)小鼠进一步降低。来自Msh6(-/-)Apc1638N和Msh3(-/-)Msh6(-/-)Apc1638N小鼠的肠道肿瘤中,近90%的野生型Apc等位基因含有截短突变。Msh6(-/-)Apc1638N小鼠中的Apc突变主要由产生终止密码子的碱基替换(93%)组成,这与Msh6在碱基-碱基错配修复中的主要作用一致。然而,在Msh3(-/-)Msh6(-/-)Apc1638N肿瘤中,我们观察到碱基替换(46%)和移码突变(54%)的混合,这表明在Msh6(-/-)Apc1638N小鼠中,Apc基因中的移码突变被Msh3抑制。有趣的是,在错配修复缺陷的肠道肿瘤中检测到的所有Apc突变(除一个外)都位于第三个20个氨基酸的β-连环蛋白结合重复序列的上游,且在所有Ser-Ala-Met-Pro重复序列之前,这表明存在对参与β-连环蛋白调节的多个结构域缺失的选择。因此,我们的分析揭示了不同的突变谱,并阐明了Msh3和Msh6在DNA修复和肠道肿瘤发生中的作用。