Headrick J P, Peart J, Hack B, Flood A, Matherne G P
Heart Foundation Research Centre, Griffith University Gold Coast Campus, Southport, Queensland, Australia.
Exp Physiol. 2001 Nov;86(6):703-16. doi: 10.1111/j.1469-445x.2001.tb00035.x.
Despite minimal model characterisation Langendorff perfused murine hearts are increasingly employed in cardiovascular research, and particularly in studies of myocardial ischaemia and reperfusion. Reported contractility remains poor and ischaemic recoveries variable. We characterised function in C57/BL6 mouse hearts using a ventricular balloon or apicobasal displacement and assessed responses to 10-30 min global ischaemia. We examined the functional effects of pacing, ventricular balloon design, perfusate filtration, [Ca(2+)] and temperature. Contractility was high in isovolumically functioning mouse hearts (measured as the change in pressure with time (+dP/dt), 6000-7000 mmHg s(-1)) and was optimal at a heart rate of approximately 420 beats min(-1), with the vasculature sub-maximally dilated, and the cellular energy state high. Post-ischaemic recovery (after 40 min reperfusion) was related to the ischaemic duration: developed pressure recovered by 82 +/- 5 %, 73 +/- 4 %, 68 +/- 3 %, 57 +/- 2 % and 41 +/- 5 % after 10, 15, 20, 25 and 30 min ischaemia, respectively. Ventricular compliance and elastance were both reduced post-ischaemia. Post-ischaemic recoveries were lower in the apicobasal model (80 +/- 4 %, 58 +/- 7 %, 40 +/- 3 %, 32 +/- 7 % and 25 +/- 5 %) despite greater reflow and lower metabolic rate (pre-ischaemic myocardial O(2) consumption (V(O2,myo)) 127 +/- 15 vs. 198 +/- 17 microl O(2) min(-1) g(-1)), contracture, enzyme and purine efflux. Electrical pacing slowed recovery in both models, small ventricular balloons (unpressurised volumes < 50-60 microl) artificially depressed ventricular function and recovery from ischaemia, and failure to filter the perfusion fluid to < 0.45 microm depressed pre- and post-ischaemic function. With attention to these various experimental factors, the buffer perfused isovolumically contracting mouse heart is shown to be stable and highly energized, and to possess a high level of contractility. The isovolumic model is more reliable in assessing ischaemic responses than the commonly employed apicobasal model.
尽管对最小模型的特性描述较少,但Langendorff灌注的小鼠心脏在心血管研究中越来越多地被使用,特别是在心肌缺血和再灌注研究中。报道的收缩性仍然较差,缺血恢复情况也各不相同。我们使用心室球囊或心尖基底位移来表征C57/BL6小鼠心脏的功能,并评估对10 - 30分钟全心缺血的反应。我们研究了起搏、心室球囊设计、灌注液过滤、[Ca(2+)]和温度的功能影响。在等容功能的小鼠心脏中收缩性较高(以压力随时间的变化(+dP/dt)衡量,为6000 - 7000 mmHg s(-1)),在心率约为420次/分钟时最佳,此时血管舒张未达最大程度,细胞能量状态较高。缺血后恢复(再灌注40分钟后)与缺血持续时间有关:缺血10、15、20、25和30分钟后,发展压力分别恢复82±5%、73±4%、68±3%、57±2%和41±5%。缺血后心室顺应性和弹性均降低。在心尖基底模型中缺血后恢复较低(80±4%、58±7%、40±3%、32±7%和25±5%),尽管再灌注流量更大且代谢率更低(缺血前心肌氧消耗(V(O2,myo))为127±15 vs. 198±17微升O(2) 分钟(-1) 克(-1)),有挛缩、酶和嘌呤流出。电起搏在两种模型中均减缓恢复,小型心室球囊(未加压体积<50 - 60微升)人为降低心室功能和缺血后恢复,未将灌注液过滤至<0.45微米会降低缺血前后的功能。注意这些各种实验因素后,缓冲液灌注的等容收缩小鼠心脏显示出稳定且能量充足,并具有高水平的收缩性。等容模型在评估缺血反应方面比常用的心尖基底模型更可靠。