Ting C S, Rocap G, King J, Chisholm S W
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Microbiology (Reading). 2001 Nov;147(Pt 11):3171-82. doi: 10.1099/00221287-147-11-3171.
Prochlorococcus is a major photosynthetic prokaryote in nutrient-limited, open ocean environments and an important participant in the global carbon cycle. This phototroph is distinct from other members of the cyanobacterial lineage to which it belongs because it utilizes a chlorophyll a2/b(2) light-harvesting complex as its major antenna, instead of phycobilisomes. Recently, genes encoding the phycobiliprotein phycoerythrin were identified in several Prochlorococcus isolates, thus making it the only extant photosynthetic prokaryote to possess a chlorophyll a/b antenna as well as phycobiliprotein genes. In order to understand the evolution of phycobiliproteins in this genus, the authors have sequenced the phycoerythrin genes of two isolates that are the most deeply branching in the Prochlorococcus lineage and share the highest degree of 16S rDNA sequence similarity to phycobilisome-containing marine SYNECHOCOCCUS: Sequence analyses suggest that within the Prochlorococcus lineage, the selective forces shaping the evolution of the phycoerythrin gene set have not been uniform. Although strains that are most closely related to marine Synechococcus possess genes (cpeB, cpeA) encoding both subunits of phycoerythrin, a more recently evolved strain is shown to lack cpeA and to possess a degenerate form of cpeB. Differences in phycoerythrin gene sequences between Prochlorococcus and Synechococcus appear to be consistent with a model of elevated mutation rates rather than relaxed selection. This suggests that although phycoerythrin is not a major constituent of the light-harvesting apparatus in Prochlorococcus, as it is in Synechococcus, the cpeB and cpeA genes are still under selection, albeit a different type of selection than in Synechococcus. The evolution of the Prochlorococcus light-harvesting antenna complex provides an important system for understanding the origins and scope of phylogenetic diversity in ocean ecosystems.
原绿球藻是营养受限的开阔海洋环境中的主要光合原核生物,也是全球碳循环的重要参与者。这种光合生物与其所属的蓝藻谱系中的其他成员不同,因为它利用叶绿素a2/b(2)光捕获复合体作为其主要天线,而不是藻胆体。最近,在几种原绿球藻分离株中鉴定出了编码藻胆蛋白藻红蛋白的基因,因此使其成为唯一现存的既拥有叶绿素a/b天线又拥有藻胆蛋白基因的光合原核生物。为了了解该属中藻胆蛋白的进化,作者对原绿球藻谱系中分支最深且与含有藻胆体的海洋聚球藻具有最高程度16S rDNA序列相似性的两个分离株的藻红蛋白基因进行了测序:序列分析表明,在原绿球藻谱系中,塑造藻红蛋白基因集进化的选择力并不一致。尽管与海洋聚球藻关系最密切的菌株拥有编码藻红蛋白两个亚基的基因(cpeB、cpeA),但一个进化较新的菌株显示缺乏cpeA并拥有cpeB的退化形式。原绿球藻和聚球藻之间藻红蛋白基因序列的差异似乎与突变率升高的模型一致,而不是选择放松。这表明,尽管藻红蛋白在原绿球藻中不是光捕获装置的主要成分,而在聚球藻中是,但cpeB和cpeA基因仍在受到选择,尽管是与聚球藻不同类型的选择。原绿球藻光捕获天线复合体的进化为理解海洋生态系统中系统发育多样性的起源和范围提供了一个重要系统。