Patel M K, Pinnock R D, Lee K
Pfizer Global Research and Development, Cambridge Laboratories, Cambridge University Forvie Site, CB2 2QB, Cambridge, UK.
Brain Res. 2001 Nov 30;920(1-2):19-26. doi: 10.1016/s0006-8993(01)02844-x.
In the present study, we have examined the effects of adenosine and its analogues on the electrophysiological properties of dorsal horn neurones in the rat adult spinal cord. Adenosine and the A1 receptor agonist R-phenylisopropyl adenosine (RPIA) reversibly hyperpolarised these neurones via the generation of an outward current at -60 mV that was inhibited by pre-application of barium or Rp-adenosine 3', 5'-cyclic monophosphothioate triethylamine. In contrast, the A2a receptor agonist 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) had no effect on the resting membrane properties of these neurones. Stimulation of the dorsal root evoked non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) at -60 mV that were completely abolished by 2,3-dihydroxy-6-nitro-7-sulophamoyl-benzo(F)quinoxalone (NBQX). Bath application of adenosine or RPIA reversibly inhibited these EPSCs in a concentration-dependent manner via a presynaptic action. In contrast, CGS21680 increased the amplitude of the EPSC in 20% of neurones tested and decreased the EPSC amplitude in 30% of neurones tested. It is concluded that adenosine exerts multiple effects upon the electrophysiological properties of dorsal horn neurones in the adult spinal cord via interaction with multiple receptors. These findings have important implications in the understanding of adenosine action in preclinical models of pain.
在本研究中,我们检测了腺苷及其类似物对成年大鼠脊髓背角神经元电生理特性的影响。腺苷和A1受体激动剂R-苯异丙基腺苷(RPIA)通过在-60 mV时产生外向电流,使这些神经元发生可逆性超极化,该外向电流可被预先应用钡离子或Rp-腺苷3',5'-环磷硫酰三乙胺所抑制。相比之下,A2a受体激动剂2-[对-(2-羧乙基)苯乙氨基]-5'-N-乙基甲酰胺基腺苷(CGS21680)对这些神经元的静息膜特性没有影响。刺激背根在-60 mV时诱发非NMDA受体介导的兴奋性突触后电流(EPSCs),该电流可被2,3-二羟基-6-硝基-7-磺基氨基甲酰基苯并(F)喹喔啉(NBQX)完全阻断。浴槽应用腺苷或RPIA通过突触前作用以浓度依赖的方式可逆性抑制这些EPSCs。相反,CGS21680在20%的受试神经元中增加了EPSC的幅度,而在30%的受试神经元中降低了EPSC的幅度。结论是,腺苷通过与多种受体相互作用,对成年脊髓背角神经元的电生理特性发挥多种作用。这些发现对理解疼痛临床前模型中的腺苷作用具有重要意义。