Suppr超能文献

在施加电场的分子动力学作用下,研究氯化钠扩展的简单点电荷水溶液中的模型通道离子电流。

Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics.

作者信息

Crozier P S, Henderson D, Rowley R L, Busath D D

机构信息

Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA.

出版信息

Biophys J. 2001 Dec;81(6):3077-89. doi: 10.1016/S0006-3495(01)75946-2.

Abstract

Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125-A internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and extended simple point charge water. Channel and bath currents were computed from 10 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration dependent and superlinear at high concentrations.

摘要

利用周期性边界条件和恒定外加电场,我们使用显式离子和扩展简单点电荷水模型,模拟了电流通过刚性膜中内径为8.125埃、具有极性壁的刚性原子通道的流动情况。对于10种不同浓度和外加电压条件中的每一种,我们从10条10纳秒的轨迹计算了通道电流和浴电流。在整个系统中对所有可移动原子均匀施加电场。平均而言,如预期的那样,由膜电容分隔的两个导电浴之间,合成的净电场主要降落在膜通道上。通道中很少被一个以上的离子占据。电流 - 电压关系取决于浓度,并且在高浓度下呈超线性。

相似文献

5
Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036116. doi: 10.1103/PhysRevE.64.036116. Epub 2001 Aug 28.
6
Molecular dynamics simulation of an archaeal lipid bilayer with sodium chloride.
Phys Chem Chem Phys. 2007 Feb 7;9(5):643-50. doi: 10.1039/b611543h. Epub 2006 Dec 1.
8
Exact continuum solution for a channel that can be occupied by two ions.
Biophys J. 1987 Sep;52(3):455-66. doi: 10.1016/S0006-3495(87)83234-4.
9
Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
J Phys Chem B. 2007 Aug 2;111(30):8993-9000. doi: 10.1021/jp0678249. Epub 2007 Jun 27.
10
The implementation of slab geometry for membrane-channel molecular dynamics simulations.
Biophys J. 2003 Jul;85(1):97-107. doi: 10.1016/S0006-3495(03)74458-0.

引用本文的文献

1
Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force.
Nat Biotechnol. 2024 Aug;42(8):1275-1281. doi: 10.1038/s41587-023-01954-x. Epub 2023 Sep 18.
2
Multi-oligomeric states of alamethicin ion channel: Assemblies and conductance.
Biophys J. 2023 Jun 20;122(12):2531-2543. doi: 10.1016/j.bpj.2023.05.006. Epub 2023 May 8.
3
Overlimiting current near a nanochannel a new insight using molecular dynamics simulations.
Sci Rep. 2021 Jul 26;11(1):15216. doi: 10.1038/s41598-021-94477-x.
4
Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT Receptor Channel.
ACS Nano. 2020 Aug 25;14(8):10480-10491. doi: 10.1021/acsnano.0c04387. Epub 2020 Jul 23.
5
Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.
J Chem Theory Comput. 2019 Aug 13;15(8):4673-4686. doi: 10.1021/acs.jctc.9b00160. Epub 2019 Jul 2.
6
Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations.
Sci Rep. 2019 Apr 23;9(1):6440. doi: 10.1038/s41598-019-42867-7.
7
High bandwidth approaches in nanopore and ion channel recordings - A tutorial review.
Anal Chim Acta. 2019 Jul 11;1061:13-27. doi: 10.1016/j.aca.2019.01.034. Epub 2019 Jan 25.
8
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
J Phys Chem B. 2017 Apr 20;121(15):3724-3733. doi: 10.1021/acs.jpcb.6b10574. Epub 2017 Jan 17.
9
Exploring the Membrane Potential of Simple Dual-Membrane Systems as Models for Gap-Junction Channels.
Biophys J. 2016 Jun 21;110(12):2678-2688. doi: 10.1016/j.bpj.2016.05.005.
10
Simulating Current-Voltage Relationships for a Narrow Ion Channel Using the Weighted Ensemble Method.
J Chem Theory Comput. 2015 Apr 14;11(4):1907-18. doi: 10.1021/ct501134s.

本文引用的文献

1
Electrostatic modeling of dipole-ion interactions in gramicidinlike channels.
Biophys J. 1991 Jul;60(1):81-8. doi: 10.1016/S0006-3495(91)82032-X.
2
Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin.
Biophys J. 2001 Sep;81(3):1255-64. doi: 10.1016/S0006-3495(01)75783-9.
3
Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents.
Biophys J. 2001 Sep;81(3):1245-54. doi: 10.1016/S0006-3495(01)75782-7.
4
Comparison of gramicidin A and gramicidin M channel conductance dispersities.
Biochim Biophys Acta. 2001 Aug 6;1513(2):185-92. doi: 10.1016/s0005-2736(01)00353-4.
5
Molecular dynamics simulation of continuous current flow through a model biological membrane channel.
Phys Rev Lett. 2001 Mar 12;86(11):2467-70. doi: 10.1103/PhysRevLett.86.2467.
6
Mechanisms of permeation and selectivity in calcium channels.
Biophys J. 2001 Jan;80(1):195-214. doi: 10.1016/S0006-3495(01)76007-9.
7
A model of calcium channels.
Biochim Biophys Acta. 2000 Dec 20;1509(1-2):1-6. doi: 10.1016/s0005-2736(00)00330-8.
8
Ion channels, permeation, and electrostatics: insight into the function of KcsA.
Biochemistry. 2000 Nov 7;39(44):13295-306. doi: 10.1021/bi001567v.
9
Binding and selectivity in L-type calcium channels: a mean spherical approximation.
Biophys J. 2000 Oct;79(4):1976-92. doi: 10.1016/S0006-3495(00)76446-0.
10
Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels.
Biophys Chem. 2000 Jul 31;86(1):1-14. doi: 10.1016/s0301-4622(00)00153-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验