Suppr超能文献

加速膜模拟的氢质量再分配。

Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.

机构信息

Department of Physics , The Chinese University of Hong Kong , Shatin, NT, Hong Kong , People's Republic of China.

Department of Chemistry and Biochemistry , University of North Carolina , Greensboro , North Carolina 27402 , United States.

出版信息

J Chem Theory Comput. 2019 Aug 13;15(8):4673-4686. doi: 10.1021/acs.jctc.9b00160. Epub 2019 Jul 2.

Abstract

The time step of atomistic molecular dynamics (MD) simulations is determined by the fastest motions in the system and is typically limited to 2 fs. An increasingly popular approach is to increase the mass of the hydrogen atoms to ∼3 amu and decrease the mass of the parent atom by an equivalent amount. This approach, known as hydrogen-mass repartitioning (HMR), permits time steps up to 4 fs with reasonable simulation stability. While HMR has been applied in many published studies to date, it has not been extensively tested for membrane-containing systems. Here, we compare the results of simulations of a variety of membranes and membrane-protein systems run using a 2 fs time step and a 4 fs time step with HMR. For pure membrane systems, we find almost no difference in structural properties, such as area-per-lipid, electron density profiles, and order parameters, although there are differences in kinetic properties such as the diffusion constant. Conductance through a porin in an applied field, partitioning of a small peptide, hydrogen-bond dynamics, and membrane mixing show very little dependence on HMR and the time step. We also tested a 9 Å cutoff as compared to the standard CHARMM cutoff of 12 Å, finding significant deviations in many properties tested. We conclude that HMR is a valid approach for membrane systems, but a 9 Å cutoff is not.

摘要

原子分子动力学(MD)模拟的时间步长取决于系统中最快的运动,通常限制在 2 fs。一种越来越流行的方法是将氢原子的质量增加到约 3 amu,并将母体原子的质量减少相同的量。这种方法称为氢质量重新分配(HMR),允许使用合理的模拟稳定性将时间步长提高到 4 fs。虽然 HMR 迄今为止已在许多已发表的研究中得到应用,但尚未对含膜系统进行广泛测试。在这里,我们比较了使用 2 fs 时间步长和 HMR 的 4 fs 时间步长运行的各种膜和膜蛋白系统的模拟结果。对于纯膜系统,我们发现结构特性(如每脂质面积、电子密度分布和序参数)几乎没有差异,尽管动力学特性(如扩散常数)存在差异。在施加电场中通过孔蛋白的传导、小肽的分配、氢键动力学和膜混合显示出对 HMR 和时间步长的依赖性很小。我们还测试了与标准 CHARMM 12 Å 截止值相比的 9 Å 截止值,发现测试的许多特性都有很大偏差。我们得出结论,HMR 是膜系统的有效方法,但 9 Å 截止值不行。

相似文献

1
Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.加速膜模拟的氢质量再分配。
J Chem Theory Comput. 2019 Aug 13;15(8):4673-4686. doi: 10.1021/acs.jctc.9b00160. Epub 2019 Jul 2.
3
Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning.通过氢质量重新分配实现长时间步长分子动力学
J Chem Theory Comput. 2015 Apr 14;11(4):1864-74. doi: 10.1021/ct5010406. Epub 2015 Mar 30.
6
Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field.使用 CHARMM 力场进行 5 fs 时间步长的脂质更快模拟。
J Chem Theory Comput. 2018 Jun 12;14(6):3342-3350. doi: 10.1021/acs.jctc.8b00267. Epub 2018 May 25.
8
The importance of membrane defects-lessons from simulations.膜缺陷的重要性:模拟研究的启示。
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.

引用本文的文献

4
Diffusion of DNA on Atomically Flat 2D Material Surfaces.DNA在原子级平整二维材料表面的扩散
ACS Nano. 2025 Jun 17;19(23):21307-21318. doi: 10.1021/acsnano.4c16277. Epub 2025 Jun 5.
10
Faster Sampling in Molecular Dynamics Simulations with TIP3P-F Water.使用TIP3P-F水在分子动力学模拟中实现更快采样
J Chem Theory Comput. 2024 Dec 24;20(24):11068-11081. doi: 10.1021/acs.jctc.4c00990. Epub 2024 Dec 12.

本文引用的文献

4
Distribution of mechanical stress in the Escherichia coli cell envelope.大肠杆菌细胞包膜中机械应力的分布。
Biochim Biophys Acta Biomembr. 2018 Dec;1860(12):2566-2575. doi: 10.1016/j.bbamem.2018.09.020. Epub 2018 Sep 29.
6
Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field.使用 CHARMM 力场进行 5 fs 时间步长的脂质更快模拟。
J Chem Theory Comput. 2018 Jun 12;14(6):3342-3350. doi: 10.1021/acs.jctc.8b00267. Epub 2018 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验