Suppr超能文献

毛细胞束对机械刺激的主动反应中的压缩非线性。

Compressive nonlinearity in the hair bundle's active response to mechanical stimulation.

作者信息

Martin P, Hudspeth A J

机构信息

Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14386-91. doi: 10.1073/pnas.251530498. Epub 2001 Nov 27.

Abstract

The auditory system's ability to interpret sounds over a wide range of amplitudes rests on the nonlinear responsiveness of the ear. Whether measured by basilar-membrane vibration, nerve-fiber activity, or perceived loudness, the ear is most sensitive to small signals and grows progressively less responsive as stimulation becomes stronger. Seeking a correlate of this behavior at the level of mechanoelectrical transduction, we examined the responses of hair bundles to direct mechanical stimulation. As reported by the motion of an attached glass fiber, an active hair bundle from the bullfrog's sacculus oscillates spontaneously. Sinusoidal movement of the fiber's base by as little as +/-1 nm, corresponding to the application at the bundle's top of a force of +/-0.3 pN, causes detectable phase-locking of the bundle's oscillations to the stimulus. Although entrainment increases as the stimulus grows, the amplitude of the hair-bundle movement does not rise until phase-locking is nearly complete. A bundle is most sensitive to stimulation at its frequency of spontaneous oscillation. Far from that frequency, the sensitivity of an active hair bundle resembles that of a passive bundle. Over most of its range, an active hair bundle's response grows as the one-third power of the stimulus amplitude; the bundle's sensitivity declines accordingly in proportion to the negative two-thirds power of the excitation. This scaling behavior, also found in the response of the mammalian basilar membrane to sound, signals the operation of an amplificatory process at the brink of an oscillatory instability, a Hopf bifurcation.

摘要

听觉系统在很宽的振幅范围内解读声音的能力取决于耳朵的非线性响应。无论是通过基底膜振动、神经纤维活动还是感知到的响度来衡量,耳朵对小信号最为敏感,并且随着刺激变强,其响应逐渐减弱。为了在机械电转导层面寻找这种行为的相关因素,我们研究了毛束对直接机械刺激的反应。如附着的玻璃纤维的运动所示,来自牛蛙球囊的活性毛束会自发振荡。纤维基部仅 +/-1 纳米的正弦运动,相当于在毛束顶部施加 +/-0.3 皮牛的力,会导致毛束振荡与刺激产生可检测到的锁相。虽然随着刺激增强,夹带现象会增加,但直到锁相几乎完成,毛束运动的幅度才会上升。毛束在其自发振荡频率下对刺激最为敏感。远离该频率时,活性毛束的敏感度类似于被动毛束。在其大部分范围内,活性毛束的反应随着刺激幅度的三分之一次幂增长;相应地,毛束的敏感度会按照激发的负三分之二次幂下降。这种缩放行为,在哺乳动物基底膜对声音的反应中也有发现,标志着在振荡不稳定性边缘(霍普夫分岔)的放大过程在起作用。

相似文献

4
Spontaneous oscillation by hair bundles of the bullfrog's sacculus.牛蛙球囊毛细胞束的自发振荡。
J Neurosci. 2003 Jun 1;23(11):4533-48. doi: 10.1523/JNEUROSCI.23-11-04533.2003.
7
Active Biomechanics of Sensory Hair Bundles.感觉毛细胞束的主动生物力学
Cold Spring Harb Perspect Med. 2019 Nov 1;9(11):a035014. doi: 10.1101/cshperspect.a035014.
10
Effects of Efferent Activity on Hair Bundle Mechanics.传出活动对毛细胞纤毛力学的影响。
J Neurosci. 2020 Mar 18;40(12):2390-2402. doi: 10.1523/JNEUROSCI.1312-19.2020. Epub 2020 Feb 21.

引用本文的文献

1
Amplification through local critical behavior in the mammalian cochlea.通过哺乳动物耳蜗中的局部临界行为实现放大。
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2503389122. doi: 10.1073/pnas.2503389122. Epub 2025 Jul 14.
2
The Critical Thing about the Ear's Sensory Hair Cells.耳朵的感觉毛细胞的关键之处。
J Neurosci. 2024 Oct 30;44(44):e1583242024. doi: 10.1523/JNEUROSCI.1583-24.2024.
3
Neural control and innate self-tuning of the hair cell's active process.神经元控制和毛细胞主动过程的固有自调节。
Biophys J. 2024 Oct 15;123(20):3550-3557. doi: 10.1016/j.bpj.2024.09.006. Epub 2024 Sep 6.
4
Review of chaos in hair-cell dynamics.毛细胞动力学中的混沌现象综述。
Front Neurol. 2024 Jul 10;15:1444617. doi: 10.3389/fneur.2024.1444617. eCollection 2024.
7
A GENERAL RETURN-MAPPING FRAMEWORK FOR FRACTIONAL VISCO-ELASTO-PLASTICITY.分数阶粘弹塑性的通用回映框架
Fractal Fract. 2022 Dec;6(12). doi: 10.3390/fractalfract6120715. Epub 2022 Dec 1.
9
A minimal physics-based model for musical perception.基于最小物理原理的音乐感知模型。
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2216146120. doi: 10.1073/pnas.2216146120. Epub 2023 Jan 24.

本文引用的文献

2
Physical basis of two-tone interference in hearing.听觉中双音干扰的物理基础。
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9080-5. doi: 10.1073/pnas.151257898.
3
In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards.蜥蜴毛细胞束中存在耳蜗放大器的体内证据。
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2826-31. doi: 10.1073/pnas.041604998. Epub 2001 Feb 13.
4
Clues to the cochlear amplifier from the turtle ear.来自龟耳的耳蜗放大器线索。
Trends Neurosci. 2001 Mar;24(3):169-75. doi: 10.1016/s0166-2236(00)01740-9.
6
Cochlear mechanisms from a phylogenetic viewpoint.从系统发育角度看耳蜗机制。
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11736-43. doi: 10.1073/pnas.97.22.11736.
8
Essential nonlinearities in hearing.听觉中的基本非线性现象。
Phys Rev Lett. 2000 May 29;84(22):5232-5. doi: 10.1103/PhysRevLett.84.5232.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验